Анализ газового состава крови

Система кровообращения

Мы остановились на том, что кислород в составе атмосферного воздуха поступает в альвеолы, откуда через их тонкую стенку посредством диффузии переходит в капилляры, опутывающие альвеолы густой сетью. Капилляры соединяются в легочные вены, которые несут кровь, насыщенную кислородом, в сердце, а точнее в левое его предсердие. Сердце работает как насос, прокачивая кровь по всему организму. Из левого предсердия обогащенная кислородом кровь отправится в левый желудочек, а оттуда — в путешествие по большому кругу кровообращения, к органам и тканям. Обменявшись в капиллярах тела с тканями питательными веществами, отдав кислород и забрав углекислый газ, кровь собирается в вены и поступает в правое предсердие сердца, и большой круг кровообращения замыкается. Оттуда начинается малый круг.

Малый круг начинается в правом желудочке, откуда легочная артерия несет кровь на «зарядку» кислородом в легкие, разветвляясь и опутывая альвеолы капиллярной сетью. Отсюда снова — по легочным венам в левое предсердие и так до бесконечности. Чтобы представить себе эффективность этого процесса, вообразите себе, что время полного оборота крови составляет всего 20-23 секунды. За это время объем крови успевает полностью «обежать» и большой и малый круг кровообращения.

Чтобы насытить кислородом столь активно меняющуюся среду, как кровь, необходимо учитывать следующие факторы:

— количество кислорода и углекислого газа во вдыхаемом воздухе (состав воздуха)

— эффективность вентиляции альвеол (площадь соприкосновения, на которой происходит обмен газами между кровью и воздухом)

— эффективность альвеолярного газообмена (эффективность веществ и структур, обеспечивающих соприкосновение крови и газообмен)

Обмен газов в альвеолах

Газообмен в легких осуществляется в результате диффузии кислорода из альвеолярного воздуха в кровь (около 500 л в сутки) и углекислого газа из крови в альвеолярный воздух (около 430 л в сутки). Диффузия происходит вследствие разности давления этих газов в альвеолярном воздухе и в крови.

Диффузия — взаимное проникновение соприкасающихся веществ друг в друга вследствие теплового движения частиц вещества. Диффузия происходит в направлении снижения концентрации вещества и ведет к равномерному распределению вещества по всему занимаемому им объему. Так, пониженная концентрация кислорода в крови ведет к его проникновению через мембрану воздушно-кровяного (аэрогематичеекого) барьера, избыточная концентрация углекислого газа в крови ведет к его выделению в альвеолярный воздух. Анатомически воздушно-кровяной барьер представлен легочной мембраной, которая, в свою очередь, состоит из эндотелиальных клеток капилляров, двух основных мембран, плоского альвеолярного эпителия, слоя сурфактанта. Толщина легочной мембраны всего 0,4—1,5 мкм.

Сурфактант — поверхностно-активное вещество, которое облегчает диффузию газов. Нарушение синтеза сурфактанта клетками легочного эпителия делает процесс дыхания практически невозможным из-за резкого замедления уровня диффузии газов.

Поступивший в кровь кислород и принесенный кровью углекислый газ могут находиться как в растворенном виде, так и в химически связанном. В обычных условиях в свободном (растворенном) состоянии переносится настолько малое количество этих газов, что им смело можно пренебречь при оценке потребностей организма. Для простоты будем считать, что основное количество кислорода и углекислого газа транспортируется в связанном состоянии.

Буферная ёмкость

Буферные растворы сохраняют своё действие только до определённого количества добавляемой кислоты, основания или степени разбавления, что связано с изменением концентраций его компонентов.

Способность буферного раствора сохранять свой pH определяется её буферной ёмкостью — в г-экв. сильной кислоты или основания, которые следует прибавить к 1 л буферного раствора, чтобы его pH изменился на единицу. Буферная ёмкость тем выше, чем больше концентрация его компонентов.

Буферная ёмкость π определяется по формуле

{\displaystyle {\mathsf {\pi ={\frac {dx}{dpH}}}}}

где dx — концентрация введённой сильной кислоты (основания)

Область буферирования — интервал pH, в котором буферная система способна поддерживать постоянное значение pH. Обычно он равен pKa±1.

Эффективность анализа

Тестирование гарантирует почти стопроцентный результат данных о функционировании кровеносной системы вашего организма. Если случаются ошибки, то, чаще всего, из-за невнимательности персонала. Эффективность сдачи анализа и результата напрямую зависит от аккуратности медицинского сотрудника. Исследование кровяных газов часто подвергается риску ошибок, вызванных неправильной выборкой, транспортировкой и хранением. Поэтому лабораториям следует придерживаться особых рекомендаций по предотвращению потенциальных ошибок, вызванных неправильным обращением с образцом.

Тест должен выполняться обученным персоналом лаборатории. Компетенция сотрудников, ответственных за анализ крови, должна оцениваться для новых работников, а квалификация переоценивается ежегодно. Это будет гарантировать более точный результат. Необходимо регистрировать время сдачи образца в центральную лабораторию. Время между отбором проб и анализом не должно превышать 30 минут. Если время превышает рекомендуемый интервал, необходимо проинформировать об этом клинический персонал, который будет исследовать кровь.

Для избегания недоразумений и путаницы, пациенту необходимо попросить, чтобы емкость с его материалом подписали или надежно приклеили пометку с фамилией. Перед тестированием работник, ответственный за анализ образцов, должен проверить детали на этикетке в соответствии с данными на бланке теста, чтобы подтвердить идентификацию пациента. Если образец необходимо погружать в ледяную суспензию (смесь льда и воды) до тех пор, пока анализ не будет выполнен (то есть, если ожидается задержка более 30 минут), целостность этикеток должна быть защищена даже во время погружения.

Лучшие материалы месяца

  • Коронавирусы: SARS-CoV-2 (COVID-19)
  • Антибиотики для профилактики и лечения COVID-19: на сколько эффективны
  • Самые распространенные «офисные» болезни
  • Убивает ли водка коронавирус
  • Как остаться живым на наших дорогах?

Немаловажной является и сама процедура. Правильные результаты гарантированы в том случае, если придерживается точный ход анализа

Перед тестом необходимо проверить качество образца цельной крови. Пробы крови, содержащие пузырьки воздуха или видимые сгустки, неприемлемы для анализа. Правильное смешивание образцов цельной крови имеет решающее значение для получения точных результатов гемоглобина. Капиллярные образцы следует смешивать с помощью металлического стержня и магнита. Магнит следует перемещать из конца в конец по капилляру, пока компоненты не будут равномерно распределены (гомогенизированы) или не менее 5 секунд

Один конец капилляра следует открыть, осторожно удалив крышку герметика. Металлический стержень нужно удалить, медленно потянув магнит над капилляром, стараясь не проливать кровь и не вводить воздух в образец

Перед введением образца в анализатор, противоположный конец капилляра следует открыть, удалив оставшуюся крышку герметика. Образец должен быть пропущен до конца, чтобы удалить захваченный воздух.

Анализ газового состава крови – это эффективный метод проверки циркуляции кислорода в крови. Он не определит конкретные болезни, но покажет, могут ли они проявиться в будущем. Насыщенный кислородом организм лучше функционирует, а количество жалоб на здоровье значительно уменьшается. По мнению медиков, для полной диагностики организма время от времени следует проводить анализ газового состава крови.

Больше свежей и актуальной информации о здоровье на нашем канале в Telegram. Подписывайтесь: https://t.me/foodandhealthru

Будем признательны, если воспользуетесь кнопочками:

Механизм

Патофизиология кислотно-основного состояния — любые ткани живого работающего организма всегда оказываются чувствительными к сдвигам pH в любую сторону. Если он превышен и реакция щелочная, тут же начинается разрушение клеток, белки сворачиваются (денатурируются), ферменты инактивируются, и организм может погибнуть.

Электролиты крови — кислоты, щелочи и соли, которые под воздействием воды распадаются на катионы и анионы. Постоянство или регуляция кислотно-основного состояния происходит за счет, как было сказано, буферных систем. Их основное предназначение – противодействие резким колебаниям содержания протонов.

Эти растворы имеют свойство держать уровень ионов водорода постоянным даже при добавлении к ним кислот или щелочей или при их разведении. Состав буфера – это смесь какой-либо слабой кислоты с ее же основанием, но с сильным анионом, то есть это кислотно-основная пара. Например, такой системой можно назвать карбонатную кислоту: Н2СО3 и NaHC03.

В крови постоянно действуют и существуют несколько основных буферных систем:

  1. Бикарбонатная (смесь Н2СО3 и НСО3) – занимает 53 % буферной емкости крови и является самой мощной.
  2. Система гемоглобин — состоит из оксигенированного гемоглобина (слабая кислота) и неоксигенированного (или дезоксигемоглобина). Это слабое основание – ННв-КНвО2) – 35 %. Оксигемоглобин в 80 раз больше отдает в среду протонов.
  3. Белковая буферная система – это, в первую очередь, альбумин крови, поэтому для внутренней среды клеток он главный. Данный буфер занимает всего 5-7 % от емкости крови. Работает он благодаря амфотерным свойствам белка. В кислой среде альбумин становится катионом, в щелочной – выступает как кислота. Такое свойство называется способностью к ионизации.
  4. Фосфатная система (дифосфат-монофосфат – NaH2РО4 и NaHPO4) – составляет 2-5 % плазмы крови.

Показания

Исследование на щелочную фосфатазу назначается в случае подозрения на заболевания печени, желчных протоков, костной ткани, кишечника и почек, при наличии характерных для данных заболеваний симптомов, а также для оценки эффективности лечения.

Анализ требуется в следующих случаях:

  • наличие признаков поражения печени (слабость, тошнота и рвота, боли в правом подреберье, желтуха, кожный зуд, потемнение мочи и обесцвечивание каловых масс);
  • присутствие симптомов поражения костной ткани (боли в конечностях и спине, деформации, повышенная ломкость костей);
  • диагностика заболеваний гепатобилиарной системы (гепатит, обтурация, билиарный цирроз и холангит, рак);
  • диагностика патологий костной ткани (остеодистрофии, опухоли и метастазы);
  • преэклампсия у беременных;
  • инфекционный мононуклеоз;
  • недоношенность новорожденных;
  • мониторинг эффективности терапии.

Также анализ может являться составляющей общего врачебного осмотра. И в некоторых случаях требуется в рамках подготовки пациента к оперативному вмешательству.

Изменения уровня pH крови

Определенные ситуации и медицинские условия могут означать, что организм не может поддерживать рН крови в пределах здорового диапазона.

РН крови может меняться в обоих направлениях.

Ацидоз возникает, когда кровь слишком кислая, с pH ниже 7,35. Алкалоз возникает, когда кровь недостаточно кислая, с рН выше 7,45.

Существует четыре основных способа изменения pH крови:

  • Метаболический ацидоз: это происходит из-за снижения уровня бикарбоната или повышения уровня кислоты.
  • Респираторный ацидоз: это происходит, когда организм удаляет меньше углекислого газа, чем обычно.
  • Метаболический алкалоз: это происходит из-за повышенного бикарбоната или снижения уровня кислоты.
  • Респираторный алкалоз: это происходит, когда организм удаляет больше углекислого газа, чем обычно.

Чтобы восстановить уровень pH в крови до здорового уровня, важно выявить и устранить основную проблему, вызвавшую изменение

Концентрация бикарбонат-ионов

Концентрация бикарбонатов (ионов HCO3-) в плазме крови является третьим основным показателем кислотно-основного состояния.

На практике различают показатели актуальных (истинных) бикарбонатов и стандартных бикарбонатов.

Актуальные бикарбонаты (AB, АБ) – это концентрация ионов HCO3— в исследуемой крови при 38°С и реальных значениях pH и pCO2.

Стандартные бикарбонаты (SB, СБ) – это концентрация ионов HCO3— в исследуемой крови при приведении ее в стандартные условия: полное насыщение кислородом крови, уравновешивание при 38°С с газовой смесью, в которой pCO2 равно 40 мм рт.ст.

У здоровых людей концентрация актуальных и стандартных бикарбонатов практически одинакова.
Нормальные величины

Цельная кровь новорожденные 17–24 ммоль/л
впоследствии 19–24 ммоль/л
взрослые
артериальная кровь 21–28 ммоль/л
венозная кровь 22–29 ммоль/л

Клинико-диагностическое значение

Диагностическое значение концентрации бикарбонатов в крови состоит, прежде всего, в определении характера нарушений КОС (метаболического или респираторного).

Показатель в первую очередь изменяется при метаболических нарушениях:

  • при метаболическом ацидозе показатель HCO3— снижается, так как расходуется на нейтрализацию кислых веществ (буферная система),
  • при метаболическом алкалозе — повышается.

Так как угольная кислота очень плохо диссоциирует и ее накопление в крови практически не отражается на концентрации HCO3-, то при первичных респираторных нарушениях изменение бикарбонатов невелико.

При компенсации метаболического алкалоза бикарбонаты накапливаются вследствие урежения дыхания, при компенсации метаболического ацидоза — в результате усиления их почечной реабсорбции.

Парциальное давление углекислого газа

Парциальное давление или напряжение углекислого газа (рСО2) — давление СО2 в газовой смеси, находящейся в равновесии с плазмой артериальной крови при температуре 38°С. Показатель является критерием концентрации углекислоты в крови.

Нормальные величины

Цельная кровь новорожденные 27–40 мм рт.ст.
дети 27–41 мм рт.ст.
мужчины 35–48 мм рт.ст. (4,66–6,38 кПа)
женщины 32–45 мм рт.ст. (4,26–6,00 кПа)

Клинико-диагностическое значение

Изменение показателя pCO2 играет ведущую роль при респираторных нарушениях:

  • увеличивается при респираторном ацидозе из-за нарушения вентиляции легких, что и вызывает накопление угольной кислоты;
  • снижается при респираторном алкалозе. В этом случае уменьшение рСО2 происходит в результате гипервентиляции легких, которая приводит к повышенному выведению из организма углекислоты и защелачиванию крови.

При нереспираторных (метаболических) проблемах показатель не изменяется. Если налицо такие сдвиги рН и показатель pCO2 не в норме, то имеются вторичные (или компенсаторные) изменения

При клинической оценке сдвига показателя рСО2 важно установить, являются ли изменения причинными или компенсаторными!

Таким образом, повышение показателя pCO2 происходит при респираторных ацидозах и компенсированном метаболическом алкалозе, а снижение — при респираторных алкалозах и компенсации метаболического ацидоза. Колебания величины рСО2 при патологических состояниях находятся в диапазоне от 10 до 130 мм рт.ст.

При респираторных нарушениях направление сдвига величины рН крови противоположно сдвигу рСО2, при метаболических нарушениях — сдвиги однонаправлены.

Концентрация буферных оснований

Еще одним показателем, характеризующим состояние КОС, является концентрация буферных оснований (buffer bases, ВВ), отражающая сумму всех анионов цельной крови, в основном анионов бикарбоната и хлора, к другим анионам относятся ионы белков, сульфаты, фосфаты, лактат, кетоновые тела и т.п.

Этот параметр почти не зависит от изменения парциального давления углекислого газа в крови, но отражает продукцию кислот тканями и частично функцию почек. По величине буферных оснований можно судить о сдвигах КОС, связанных с увеличением или уменьшением содержания нелетучих кислот в крови (то есть всех, кроме угольной кислоты).

Нормальные величины

Цельная кровь взрослые 44–48 ммоль/л

На практике используемым параметром концентрации буферных оснований является параметр «остаточные анионы» или «неопределяемые анионы» или «анионное несоответствие» или «анионная разница».

В основе использования показателя анионной разницы лежит постулат об электронейтральности, то есть количество отрицательных (анионов) и положительных (катионов) в плазме крови должно быть одинаковым. Если же экспериментально определить количество наиболее представленных в плазме крови ионов Na+, K+, Cl-, HCO3-, то разность между катионами и анионами составляет примерно 12 ммоль/л.

Анионная разница = ( + ) — ( + [HCO3-]) = 12 ммоль/л

Увеличение величины анионной разницы сигнализирует о накоплении неизмеряемых анионов (лактат, кетоновые тела) или катионов, что уточняется по клинической картине или по анамнезу.

Клинико-диагностическое значение

Показатели общих буферных оснований и анионной разницы особенно информативны при метаболических сдвигах КОС, тогда как при респираторных нарушениях его колебания незначительны.

Состав вдыхаемого, выдыхаемого и альвеолярного воздуха

В обычных условиях человек дышит атмосферным воздухом, имеющим относительно постоянный состав. В выдыхаемом воздухе всегда меньше кислорода и больше углекислого газа. Меньше всего кислорода и больше всего углекислого газа в альвеолярном воздухе. Различие в составе альвеолярного и выдыхаемого воздуха объясняется тем, что последний является смесью воздуха мертвого пространства и альвеолярного воздуха.

Воздух Кислород Углекислый газ Азот и др. газы
Вдыхаемый 20,93% 0.03% 79,04%
Выдыхаемый 16% 4,5% 79,5%
Альвеолярный 14% 5,5% 80,5%

Альвеолярный воздух является внутренней газовой средой организма. От его состава зависит газовый состав артериальной крови. Регуляторные механизмы поддерживают постоянство состава альвеолярного воздуха, который при спокойном дыхании мало зависит от фаз вдоха и выдоха. Например, содержание С02 в конце вдоха всего на 0,2-0,3% меньше, чем в конце выдоха, так как при каждом вдохе обновляется лишь 1/7 часть альвеолярного воздуха.

Кроме того, газообмен в легких протекает непрерывно, независимо от фаз вдоха или при выдоха, что способствует выравниванию состава альвеолярного воздуха. При глубоком дыхании, из-за нарастания скорости вентиляции легких, зависимость состава альвеолярного воздуха от вдоха и выдоха увеличивается. При этом надо помнить, что концентрация газов «на оси» воздушного потока и на его «обочине» тоже будет различаться: движение воздуха «по оси» будет быстрее и состав будет больше приближаться к составу атмосферного воздуха. В области верхушек легких альвеолы вентилируются менее эффективно, чем в нижних отделах легких, прилежащих к диафрагме.

Медицинские офисы KDLmed

  • КЛИНИКА 1
  • КЛИНИКА 2
  • КЛИНИКА 3

АДРЕС:г. Пятигорск, проспект 40 лет Октября, 62/3

ВРЕМЯ РАБОТЫ:пн-пт 7:30 — 18:00
сб 7:30 — 14:00 / вс 8:30 — 13:00
Взятие крови: пн-сб 7:30 — 12:00
вс 8:30 — 12:00
Взятие мазка: пн-пт 7:30 — 16:00
сб 7:30 — 13:30 / вс 8:30 — 12:00

ТЕЛЕФОН:(8793) 330-640
+7 (928) 225-26-74

АДРЕС:г. Пятигорск, проспект 40 лет Октября, 14

ВРЕМЯ РАБОТЫ:пн-пт 7:30 — 18:00
сб 7:30 — 14:00 / вс 8:30 — 13:00
Взятие крови: пн-сб 7:30 — 12:00
вс 8:30 — 12:00
Взятие мазка: пн-пт 7:30 — 16:00
сб 7:30 — 13:30 / вс 8:30 — 12:00

ТЕЛЕФОН:(8793) 327-327
+7 (938) 302-23-86

АДРЕС:г. Пятигорск, ул. Адмиральского, 6А

ВРЕМЯ РАБОТЫ:пн-пт 7:30 — 18:00
сб 7:30 — 14:00
Взятие крови: пн-сб 7:30 — 12:00
Взятие мазка: пн-пт 7:30 — 16:00
сб 7:30 — 13:30

ТЕЛЕФОН:(8793) 98-13-00
+7 (928) 363-81-28

АДРЕС:г. Ставрополь, ул. Ленина, 301

ВРЕМЯ РАБОТЫ:пн-пт 7:30 — 15:00
сб 7:30 — 14:00 / вс 8:30 — 13:00

ТЕЛЕФОН:(8652) 35-00-01
+7 (938) 316-82-52

  • КЛИНИКА 1
  • КЛИНИКА 2

АДРЕС:г. Невинномысск, ул. Гагарина, 19

ВРЕМЯ РАБОТЫ:пн-пт 7:30 — 16:00
сб 7:30 — 15:00
вс 8:30 — 14:00

ТЕЛЕФОН:(86554) 7-08-18
+7 (928) 303-82-18

АДРЕС:г.Невинномысск, ул. Гагарина, 60

ВРЕМЯ РАБОТЫ:пн-пт 7:30 — 16:00
сб 7:30 — 13:00

ТЕЛЕФОН:8 (86554) 6-08-81
8 (938) 347-42-17

АДРЕС:г. Нефтекумск, 1-й микрорайон, ул. Дзержинского, 7

ВРЕМЯ РАБОТЫ:пн-пт 7:30 — 18:00
сб 7:30 — 13:00

ТЕЛЕФОН:(86558) 4-43-83
+7 (928) 825-13-43

АДРЕС:г. Буденновск, пр. Энтузиастов, 11-Б

ВРЕМЯ РАБОТЫ:пн-пт 7:30 — 18:00
сб 7:30 — 13:00
вс 8:30 — 13:00

ТЕЛЕФОН:(86559) 5-55-95
+7 (938) 302-23-89

АДРЕС:г. Зеленокумск, ул. Гоголя, д.83

ВРЕМЯ РАБОТЫ:пн-пт 7:30 — 18:00
сб 7:30 — 13:00
вс 8:30 — 13:00

ТЕЛЕФОН:(86552) 6-62-14
+7 (938) 302-23-90

АДРЕС:г. Минеральные Воды, ул. Горская, 61, 13/14

ВРЕМЯ РАБОТЫ:пн-пт 7:30 — 16:00
сб 7:30 — 16:00 / вс 8:30 — 15:00

ТЕЛЕФОН:(87922) 6-59-29
+7 (938) 302-23-88

  • КЛИНИКА 1
  • КЛИНИКА 2

АДРЕС:г. Ессентуки, ул. Володарского, 32

ВРЕМЯ РАБОТЫ:пн-пт 7:30 — 16:00
сб 7:30 — 14:30 / вс 8:30 — 13:00

ТЕЛЕФОН:(87934) 6-62-22
+7 (938) 316-82-51

АДРЕС:г.Ессентуки, ул.Октябрьская 459 а

ВРЕМЯ РАБОТЫ:пн-пт 7:30 — 15:00
сб 7:30 — 14:30

ТЕЛЕФОН:(87934) 99-2-10
+7 (938) 300-75-28

АДРЕС:г. Георгиевск, ул. Ленина, 123/1

ВРЕМЯ РАБОТЫ:пн-пт 7:30 — 16:00
сб 7:30 — 14:00 / вс 8:30 — 13:00

ТЕЛЕФОН:(87951) 50-9-50
+7 (938) 302-23-87

АДРЕС:г. Благодарный, ул. Первомайская, 38

ВРЕМЯ РАБОТЫ:пн-пт 7:30 — 15:00
сб 7:30 — 13:00

ТЕЛЕФОН:(86549) 24-0-24
+7 (928) 363-81-37

АДРЕС:г. Светлоград, ул. Пушкина, 19 (Центр, Собор)

ВРЕМЯ РАБОТЫ:пн-пт 7:30 — 15:00
сб 7:30 — 13:00

ТЕЛЕФОН:(86547) 40-1-40
+7 (928) 363-81-41

АДРЕС:с. Донское, ул. 19 Съезда ВЛКСМ, 4 А

ВРЕМЯ РАБОТЫ:пн-пт 7:30 — 16:00
сб 7:30 — 13:00

ТЕЛЕФОН:(86546) 34-330
+7 (928) 363-81-25

АДРЕС:г. Новоалександровск, ул. Гагарина, 271 (пересечение с ул. Пушкина)

ВРЕМЯ РАБОТЫ:пн-пт 7:30 — 18:00
сб 7:30 — 13:00

ТЕЛЕФОН:8(86544) 5-46-44
+7 (928) 363-81-45

АДРЕС:с. Александровское, ул. Гагарина, 24

ВРЕМЯ РАБОТЫ:пн-пт 7:30 — 15:00
сб 7:30 — 13:00

ТЕЛЕФОН:(86557) 2-13-00
+7 (928) 363-81-35

АДРЕС:с. Кочубеевское, ул. Братская, 98 (ТЦ «ЦУМ»)

ВРЕМЯ РАБОТЫ:пн-пт 7:30 — 13:00
сб 7:30 — 13:00
вс 8:30 — 13:00

ТЕЛЕФОН:(86550) 500-22
+7 (928) 363-81-42

АДРЕС:г. Железноводск, ул. Ленина, 127

ВРЕМЯ РАБОТЫ:пн-пт 7:30 — 17.30
сб 7:30 — 13:00

ТЕЛЕФОН:(87932) 32-8-26
+7 (928) 363-81-30

АДРЕС:с. Арзгир, ул. Кирова, 21 (Рынок)

ВРЕМЯ РАБОТЫ:пн-пт 7:30 — 14:00
сб 7:30 — 13:00

ТЕЛЕФОН:(86560) 31-0-41
+7 (928) 363-81-44

АДРЕС:г.Ипатово, ул. Ленинградская, 54

ВРЕМЯ РАБОТЫ:пн-пт 7:30 — 18:00
сб 7:30 — 13:00

ТЕЛЕФОН:8 (86542) 5-85-15
8 (938) 347-42-16

АДРЕС:ст. Ессентукская, ул. Павлова, 17

ВРЕМЯ РАБОТЫ:пн-пт 7:30 — 16:00
сб 7:30 — 14:30

ТЕЛЕФОН:8 (87961) 6-61-00
8 (938) 347-42-18

АДРЕС:ст. Курская, ул. Калинина, д. 188

ВРЕМЯ РАБОТЫ:пн-пт 7:30 — 18:00
сб 7:30 — 13:00

ТЕЛЕФОН:8(87964) 5-40-10
8(938) 347-43-29

  • Пятигорск
  • Ставрополь
  • Невинномысск
  • Нефтекумск
  • Буденновск
  • Зеленокумск
  • Минеральные Воды
  • Ессентуки
  • Георгиевск
  • Благодарный
  • Светлоград
  • Донское
  • Новоалександровск
  • Александровское
  • Кочубеевское
  • Железноводск
  • Арзгир
  • Ипатово
  • Ессентукская
  • Курская

Тесты pH крови

Есть два основных типа тестов, которые врачи могут использовать для определения pH крови: анализ газов артериальной крови и анализ электролитов.

Знание pH крови может помочь врачу выяснить, есть ли у пациента кислотно-щелочное расстройство.

Врачи также могут использовать эти тесты для мониторинга уровня pH крови, установления и лечения любых основных причин, а также для оказания помощи людям, находящимся в критическом состоянии.

Анализы газов артериальной крови обычно проводятся в больнице. Они измеряют кислотность, кислород и уровень углекислого газа в крови. Врач берет небольшое количество крови, часто с запястья. Затем он отправляет этот образец в лабораторию для анализа.

Тесты на электролит могут быть частью обычной первой помощи, или врач может выполнить их, когда пациент серьезно болен. Тест измеряет уровень солей и минералов, таких как бикарбонат, которые присутствуют в крови. Врач обычно должен взять кровь из вены на руке.

Результаты этих тестов могут помочь врачу определить, что вызывает определенные симптомы и правильно ли работают регуляторные системы организма.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector