Функции липидов

Липиды – строение, свойства и функции молекул – Помощник для школьников Спринт-Олимпик.ру

Любому организму требуются жизненно важные соединения. В составе почти всех тканей присутствуют липиды. Это жироподобные вещества, имеющие биологическое происхождение. Они являются источником энергетического запаса и подразделяются на классы и виды, имеющие свой функционал. Большинство из них принимает участие в регуляции обмена холестерина, препятствуют его накоплению.

Молекулы липидов можно найти в любой живой клетке, без них невозможна жизнь. Они выполняют большинство функций как в масштабах всего организма, так и в отдельной клетке.

Составлены из мономеров, включающих жирные кислоты и глицерин. Биологическая роль жиров в организме достаточно высока, т. к. без них невозможны многие жизненно важные процессы.

Примером химической реакции может служить цепное окисление.

Основная функция липидов заключается в обновлении клеточных мембран. Окисляется обычно жировой слой оболочек клеток. Жиры тесно связаны с метаболизмом:

Аденозинтрифосфорная кислота. Необходима для транспортировки питательных веществ, деления клеток, обеззараживания токсинов.
Аминокислоты. Это структурная часть белков. При соединении с липидами они превращаются в липопротеины, которые осуществляют транспортировку полезных веществ в организме.
Нуклеиновая кислота. Входит в структуру ДНК. При расщеплении липидов некоторая часть энергии идет на деление клеток, в результате которого появляются новые цепи ДНК.
Стероиды. Гормоны с повышенным уровнем содержания этих соединений. При плохом усвоении они повышают риск развития заболеваний органов эндокринной системы.

В них происходит образование и усвоение веществ, которые требуются для поддержания жизнедеятельности клетки и ее деления. Липиды выполняют несколько функций:

Энергетическая. Заключается в распаде липидов в организме с выделением большого объема энергии. Она требуется для поддержания и нормализации дыхания, деления клеток и их роста, а также других процессов. Липиды проникают в клетку с кровотоком и откладываются в виде жировых капель в ее цитоплазме. Клетка получает энергию при расщеплении молекул.
Резервная. За накоплением жиров следят адипоциты — клетки, образующие жировую ткань в организме. Наибольший ее запас расположен в подкожно-жировой клетчатке. Она также выполняет теплоизоляцию организма, поддерживая нормальную температуру тела.
Структурная. В клетке липиды, выполняя строительную функцию, входят в состав мембран, формируя и сохраняя стенки, и осуществляют обмен веществ.
Транспортная. Эта функция относится к второстепенным. Ее осуществляют в основном липопротеины. Они состоят из белков и липидов, переносят с кровью вещества между органами.
Ферментативная. Липиды участвуют в формировании ферментов, помогают усваивать некоторые микроэлементы, которые поступают с пищей.
Сигнальная. Поддерживает несколько процессов организма. Заключается в переносе значимых сигналов внутрь клетки и из нее. Осуществляют это фосфатидилинозитол, эйкозаноиды, гликолипиды.
Регуляторная. Липиды участвуют в регуляции многих процессов, но самостоятельно на их протекание не влияют. Это в основном стероидные гормоны (половые и надпочечников). Они участвуют в обмене веществ, репродуктивной функции, оказывают влияние на иммунитет.

Каждая из этих функций очень важна для поддержания нормальной жизнедеятельности людей и животных.

Основные функции жиров в организме человека

Какие функции в организме выполняют жиры? Их множество — химические, физические, питательные, защитные и даже эстетические.

Энергетическая — производство и хранение энергии

Это одно из их главных предназначений. Человек постоянно расходует энергию, даже когда спит — она необходима для базовых функций жизнедеятельности. Жиры — самый мощный источник энергии, при распаде всего 1 его грамма образуется 9 ккал энергии, что существенно выше, чем при окислении белков и углеводов (около 4 ккал) или клетчатки (2 ккал). Липиды покрывают половину суточной потребности человека в энергии в состоянии покоя или при обычной (не повышенной) активности. Поскольку жиры не растворяются в воде, они являются идеальным источником хранения энергии. Ее запас в жировой ткани организм может использовать по мере необходимости, например, при недостатке питания, в период повышенных нагрузок или просто в перерывах между приемами пищи. Вот почему в бедных странах жирная пища ценится так высоко .

Структурная

Мембраны клеток физически разграничивают их внутреннее содержимое от внешней среды, контролируя при этом поступление и выведение веществ. Клеточные мембраны состоят, в основном, из жиров: фосфолипидов, триглицеридов и холестерола. Длина и насыщенность жирных кислот (линоленовой и линолевой) определяет плотность и проницаемость мембран. Более короткая длина и меньшая концентрация кислот делают клетки более гибкими и активными. Это играет очень важную роль во многих биологических процессах, в том числе поддержания зрения, иммунитета, взаимодействия клеток, производства мембран и гормонов, а также функционирования мозга. Именно мозг из всех органов имеет самый высокий процент содержания жира — около 60%. Эти виды жирных кислот называют незаменимыми, т.е. организм не может их сам производить, их запас можно пополнить только с пищей.

Транспортная

Жиры обеспечивают доставку жирорастворимых витаминов A, D, E и К, а также делают возможным их усвоение в кишечнике. Потребление достаточного количества липидов, таким образом, необходимо для поддержания нормального уровня этих микроэлементов, важных для здоровья кожи, зубов, костей, крови и зрения. Подобным образом жиры помогают в транспортировке холестерола, кислорода и жирных кислот. Эта функция очень важна для спортсменов и бодибилдеров .

Пищеварительная

Жиры нужны для расщепления и абсорбции целого ряда питательных веществ, являющихся жирорастворимыми. Вырабатываемые в печени из липидов жирные кислоты, смешиваясь в кишечнике с водой, помогают их усвоению. Плохо переваренная пища снижает иммунитет, становится причиной воспалений и аллергий. Липиды помогают этого не допустить.

Защитная

Под кожей каждого человека находится слой жира, оберегающий внутренние органы и весь организм от перепадов температуры, происходящих во внешней среде. Жир — плохой проводник тепла, поэтому он действует в роли теплоизолятора, препятствуя переохлаждению. Такую же роль он играет и у других млекопитающих, особенно у проживающих в условиях холодного климата и под водой. Более того, многие внутренние органы (например, почки) покрыты тонким жировым слоем, который предохраняет их от повреждений. Без этого защитного слоя каждый толчок или ушиб представлял бы серьезную опасность для этих органов.

Выработка гормонов

Один из жиров — холестерол — необходим для производства стероидных гормонов в теле человека. Эстроген, тестостерон, прогестерон, активная форма витамина Д вырабатываются из холестерола. Без него невозможно сохранение беременности, поддержание репродуктивных функций, регулирование уровня кальция .

Регулятивная

Жиры участвуют в синтезе внутренней (эндогенной) воды, простагландинов, пептидов, проинсулина и других микроэлементов и ферментов, обеспечивающих нормальный обмен и усвоение веществ.

Косметическая

Липиды придают коже эластичность и упругость, защищают ее от воспаления. Сохраняя ее от появления микротрещин, они препятствуют проникновению в кожу инфекций.

Создание чувства сытости

Жиры играют важную роль в возникновении чувства насыщения. Жиры перевариваются в ЖКТ дольше, чем белки или углеводы, поэтому жирная пища более длительное время находится в желудке, снижая и замедляя появление чувства голода.

Участвуют в кроветворении

Жирные кислоты принимают участие в образовании красных кровяных телец (гемоглобина). Достаточный уровень гемоглобина обеспечивает поступление кислорода и других питательных веществ к клеткам, вывод продуктов жизнедеятельности (углекислый газ, молочная кислота).

Защищают генетический материал

Жирные кислоты омега-3 регулируют проявление генов и сдерживают развитие опухолей.

Особенности

Липиды являются важными веществами, которые требуются для выполнения многих жизненно важных функций. Они почти не растворяются в воде, а именно являются гидрофобными соединениями. Однако вместе с Н2О они позволяют получить эмульсию. Липиды могут распадаться в органических растворителях – в бензоле, ацетоне, спиртах и др. Жиры не имеют цвета и запаха

Также стоит обратить внимание на химический состав данных элементов

Молекулы простых липидов имеют в основе жирные кислоты и спирт, а сложных – спирт, высокомолекулярные жирные кислоты и другие вещества. Поэтому несложно сказать, на какие вещества распадаются липиды – на спирты и жирные кислоты. Они имеются в составе всех живых клеток. Жиры входят в биологические мембраны, они оказывают воздействие на свойства проницаемости клеточных структур и активность многих ферментов. Липиды принимают участие в различных процессах человеческого организма: в передаче нервного импульса, сокращении мышц, создании межклеточных контактов, иммунохимических процессах.

Липиды в составе диеты человека

Среди липидов в диетическом питании человека обычно используются триглицериды – нейтральные жиры. Они являются богатым источником энергии, а также они требуются для всасывания витаминов с жирорастворимой структурой.

Насыщенные кислоты имеются в составе следующей пищи:

  • различных видов мяса – говядины, свинины, баранины, птицы;
  • молочных продуктов;
  • некоторых тропических фруктов, а именно кокосов.

Ненасыщенные виды кислот могут попадать в организм человека при употреблении следующих видов продуктов:

  • орехов;
  • семечек подсолнечника;
  • оливкового и других растительных масел.

Главными источниками холестерола в рационе является мясо, внутренние органы животных, яичные желтки, молочные продукты, рыба.

Для справки! Организация American Heart Association советует потреблять липиды в количестве не больше 30% от общего рациона. При диете стоит уменьшить содержание насыщенных кислот до 10% от всех жиров. Не нужно принимать больше 300 мг холестерола в сутки (этот объем входит в состав одного яичного желтка).

Липиды – важные элементы, которые имеют огромное значение для природы и человека. Данные вещества обладают сложным составом, а их классификация объединяет множество групп и подгрупп, которые обладают разными свойствами и отличительными функциями.

Классификация

Жиры являются сложными соединениями, которые могут встречаться в разных модификациях, они выполняют разные функции

Они представляют особую важность для клеток, принимают участие в многочисленных процессах человеческого организма. По этой причине классификация липидов достаточно обширная, она включает множество видов жиров, их основные признаки

Ниже в таблице имеется полная классификация жиров в зависимости от строения.

Описанные жиры относятся к омыляемым, во время их гидролиза получается мыло. Отдельно в группу неомыляемых жиров, а именно не вступающих в реакцию с водой, включают стероиды.

В зависимости от строения стероиды подразделяют на подгруппы:

  • Стерины. Это стероидные спирты. Они содержатся в составе животных и растительных тканей (холестерин, эргостерин).
  • Желчные кислоты. Производные холевой кислоты. Они содержат одну группу –СООН. Обеспечивают полноценное растворение холестерина и переваривание липидов. К этой группе можно отнести такие виды жирных кислот, как холевая, дезоксихолевая, литохолевая.
  • Стероидные гормоны. Обеспечивают усиленный рост и развитие организма. К этой группе относятся гормоны – кортизол, тестостерон, кальцитриол.

Существует большая группа – липопротеины. Это сложные соединения жиров и белков (аполипопротеинов). Липопротеины относятся к сложным белкам, но не к жирам.

В их составе имеются разнообразные сложные эфиры:

  • холестерины;
  • фосфолипиды;
  • нейтральные жиры;
  • жирные кислоты.

Выделяют две группы липопротеинов:

  • Растворимые. Содержатся в плазме крови, молоке, желтке.
  • Нерастворимые. Имеются в составе плазмалеммы, оболочки нервных волокон, хлоропластов.

Жиры в зависимости от физической структуры разделяют на твердые, жиры, масла. По нахождению в организме выделяют резервные (непостоянные, зависят от питания) и структурные (генетические обусловленные) жиры. В соответствии с происхождением бывают животными и растительными.

Биохимические методы исследования

Биохим, определение Л. проводится гл. обр. в плазме или сыворотке крови, значительно реже в кале (с целью диагностики стеатореи) и моче (при липурии). Определение Л

в плазме крови особенно важно при заболеваниях, сопровождающихся повышением их концентрации в крови (гиперлипидемиях). К ним относятся некоторые заболевания печени (острые и хрон, гепатиты, цирроз и др.), липоидный нефроз (нефротическая гиперлипидемия), сахарный диабет, атеросклероз, панкреатиты, гипотиреоз

Широко применяется определение Л. (холестерина и триглицеридов) в крови при фенотипировании первичных и вторичных гиперлипопротеинемий с целью диагностики и рационального диетического и медикаментозного лечения. Снижение содержания Л. в крови (гиполипидемия) наблюдается реже — при длительном голодании или резко ограниченном потреблении жиров и при гипертиреозе.

При исследовании Л. в крови необходимо строго придерживаться следующих общих принципов: 1) взятие крови производится натощак спустя 10—12 час. после последнего приема пищи; 2) плазма (сыворотка) крови, используемая для анализа, не должна быть гемолизированной; 3) для экстрагирования Л. применяются органические растворители высокой степени очистки; 4) стандарты или референтные препараты Л. сопоставляют с международными стандартами и хранят в замороженном состоянии.

Существует несколько методов определения общих Л. в плазме (сыворотке) крови. Широкое применение нашли гравиметрические методы, основанные на экстрагировании Л. из плазмы крови смесью органических растворителей, с последующим их выпариванием и взвешиванием липидного остатка. Эти методы, однако, не отличаются высокой точностью.

Ряд методов основан на окислении общих Л. хромовой кислотой с последующим титриметрическим или колориметрическим количественным определением (см. Колориметрия, Титриметрический анализ). Широко применяется метод, основанный на цветной реакции, к-рую дают продукты распада Л. с сульфофосфованилиновым реактивом. Метод определения общих Л. в сыворотке крови с сульфофосфованилиновым реактивом принят у нас в стране в качестве унифицированного; содержание Л. в сыворотке крови здорового человека, определенное этим методом, в среднем составляет 350—800 мг%.

Концентрацию общих Л. в сыворотке крови определяют также методом Свана в модификации Л. К. Баумана (окрашенные судаковым черным Л. количественно извлекаются из сыворотки крови и определяются фотометрически) и турбидиметрическим методом (метод Хуэрго), в основу к-рого положено измерение оптической плотности жировой эмульсии, образуемой при взаимодействии серной к-ты с n-диоксановым экстрактом Л. сыворотки крови. Методом Хуэрго в сыворотке крови здорового человека определяется 500 — 700 мг% общих Л.

Для определения триглицеридов наиболее часто применяют методы, в основе которых лежит гидролитическое расщепление триглицеридов. Образовавшийся в результате гидролиза глицерин окисляют до формальдегида и последний определяют колориметрически. Наибольшей точностью из таких методов обладает метод Карлсона, часто применяемый в модификации Игнатовской (H. Ignatowsca).

Для определения холестерина используют методы, основанные на цветной реакции Либерманна— Бурхарда (см. Либерманна-Бурхарда реакция), причем наибольшей точностью из них обладает метод Абелля (см. Абелля метод). Кроме того, для определения холестерина и триглицеридов в крови начинают применять высокоспецифические энзиматические методы с использованием готовых наборов реактивов. Наконец, для определения этих Л. используют автоанализаторы — отечественный прибор АБМ-1, автоанализатор АА-2 фирмы «Техникой» и др. (см. Автоанализаторы).

Методы определения фосфолипидов основаны на экстрагировании или осаждении фосфолипидов из плазмы (сыворотки) крови, минерализации фосфолипидного фосфора, проведении цветной реакции на фосфор и колориметрическом измерении интенсивности окраски (см. Блура метод).

Для определения неэтерифицированных жирных к-т используют титриметрические и колориметрические методы. Из последних наиболее часто применяют методы, основанные на том, что жирные к-ты образуют с медью соли, которые в свою очередь образуют цветные комплексы с диэтил дитиокарбаматом натрия и другими соединениями.

Для разделения Л. используют методы тонкослойной хроматографии, часто с последующим анализом жирных к-т с помощью газожидкостной хроматографии (см. Хроматография).

Значение липидов в клетке. Строение и функции липидов

Липиды не имеют единой химической характеристики. В большинстве пособий, давая определение липидам , говорят, что это сборная группа нерастворимых в воде органических соединений, которые можно извлечь из клетки органическими растворителями — эфиром, хлороформом и бензолом. Липиды можно условно разделить на простые и сложные.

Простые липиды в большинстве представлены сложными эфирами высших жирных кислот и трехатомного спирта глицерина — триглицеридами. Жирные кислоты имеют: 1) одинаковую для всех кислот группировку — карбоксильную группу (–СООН) и 2) радикал, которым они отличаются друг от друга. Радикал представляет собой цепочку из различного количества (от 14 до 22) группировок –СН2–. Иногда радикал жирной кислоты содержит одну или несколько двойных связей (–СН=СН–), такую жирную кислоту называют ненасыщенной . Если жирная кислота не имеет двойных связей, ее называют насыщенной . При образовании триглицерида каждая из трех гидроксильных групп глицерина вступает в реакцию конденсации с жирной кислотой с образованием трех сложноэфирных связей.

Если в триглицеридах преобладают насыщенные жирные кислоты , то при 20°С они — твердые; их называют жирами , они характерны для животных клеток. Если в триглицеридах преобладают ненасыщенные жирные кислоты , то при 20 °С они — жидкие; их называют маслами , они характерны для растительных клеток.

1 — триглицерид; 2 — сложноэфирная связь; 3 — ненасыщенная жирная кислота;4 — гидрофильная головка; 5 — гидрофобный хвост.

Плотность триглицеридов ниже, чем у воды, поэтому в воде они всплывают, находятся на ее поверхности.

К простым липидам также относят воски — сложные эфиры высших жирных кислот и высокомолекулярных спиртов (обычно с четным числом атомов углерода).

Сложные липиды . К ним относят фосфолипиды, гликолипиды, липопротеины и др.

Фосфолипиды — триглицериды, у которых один остаток жирной кислоты замещен на остаток фосфорной кислоты. Принимают участие в формировании клеточных мембран.

Гликолипиды — см. выше.

Липопротеины — комплексные вещества, образующиеся в результате соединения липидов и белков.

Липоиды — жироподобные вещества. К ним относятся каротиноиды (фотосинтетические пигменты), стероидные гормоны (половые гормоны, минералокортикоиды, глюкокортикоиды), гиббереллины (ростовые вещества растений), жирорастворимые витамины (А, D, Е, К), холестерин, камфора и т.д.

Основные свойства

Специалисты выделяют физические и химические свойства жиров. Липиды представляют собой легкие вещества, агрегатное состояние которых может быть жидким или твердым — зависит от температуры. При нагревании даже твердые виды триглицеридов становятся жидкими. Время превращения зависит от состава и хранения.

Поскольку молекулы не растворяются в воде, ученые сделали вывод, что они имеют меньшую плотность. Однако в эфире, бензоле и других органических веществах липиды растворить вполне возможно. Частично растворение происходит под воздействием этанола.

Среди химических свойств липидов выделяют гидролиз, который осуществляется путем воздействия щелочей и минеральных кислот во время нагревания. Стоит отметить, что высокая температура для этого процесса не требуется. В организме человека он происходит благодаря воздействию ферментов. В результате гидролиза происходит распад молекулы жира на глицерин и карбоновые кислоты.

Если расщепление проводится искусственным способом, с помощью щелочей и других веществ, процесс носит название омыление. Еще одним химическим свойством жиров является гидрирование. Реакция представляет собой присоединение молекулы водорода к остаткам ненасыщенных карбоновых кислот, содержащихся в растительных маслах. В результате жидкие липиды становятся твёрдыми. Такой продукт называется саломасом (комбинированный жир).

Подробная информация о функциях жиров в организме человека

Биологическая функция жиров очень обширная, и благодаря тому, что физиология, медицина наряду с химиками интенсивно развиваются параллельно с усовершенствованием новых приборов, появляется возможность проводить более точные исследования и узнавать о предназначении жиров, а также липидов и других веществ.

Жиры выполняют важнейшие функции в организме

Функции:

Энергетическая. Общая формула жиров по преобразованию их в компоненты, которые приносят пользу такова — при окислительном расщеплении 1 г жира происходит образование 9 ккал энергии, это выше, чем у преобразования белков и углеводов.
Регуляторная. При осуществлении обменной реакции, 1 г жира может синтезироваться в 10 г внутренней воды, называющейся эндогенная. Вода, которая поступает с продуктами — это внешняя или экзогенная. Стоит заметить, что вода является достаточно интересным веществом, которое может объединяться в ассоциаты. Именно по этому фактору и происходит отличие характеристик воды, которая прошла процесс очистки, кипячения или таяния. Аналогичным образом есть отличие в качестве воды, которая синтезируется в организме и поступает извне. Эндогенные воды в обязательном порядке подлежат синтезированию.
Структурно-пластическая

Жирные кислоты являются своего рода строительным материалом, так как сами эти вещества, особенно в совокупности с белками и углеводами, имеют свойство создавать и восстанавливать ткани тела, что особенно важно для формирования клеточных оболочек, основа которых, это липопротеиды (структурированные липидные и белковые смеси). Именно за счет нормального состояния липидного слоя и клеточной мембраны происходит так всем необходимый полноценный обмен веществ и энергии

Именно таким образом происходит интеграция структурно-пластической функции с транспортной.
Жировая прослойка, находящаяся под кожным покровом человека, не менее важна, так как она отвечает за сохраняющую тепло функцию, предотвращая переохлаждение организма. В качестве примера можно привести детей, которые купаются в прохладном море. Если у них отмечается недостаток подкожного жира, они замерзнут намного быстрее взрослого человека. Дети, у которых оптимальная жировая прослойка, могут пробыть в прохладной воде намного дольше. Особенность основного подкожного жира заключается в том, что он может в некоторой степени предотвратить ушибы от механического воздействия. Учеными было доказано, что естественный слой жира в нормальном количестве должен присутствовать практически на всех органах.
Обеспечивающая. Натуральные жиры — это смесь веществ, которые обладают дополнительными биологическими активными компонентами. Их суть заключается в том, чтобы обеспечить организм витаминами, соединениями витаминоподобных микроэлементов, а также стеринами и сложными липидами.
Гигиеничность. За счет наличия тонкого слоя жира на кожном покрове, он остается упругим, эластичным и предотвращается образование растрескиваний, шелушений и других дефектов. Кожа, на которой отсутствуют микротрещины, защищена от проникновения в нее микробов. Однако повышенная жирность кожи свидетельствует о нарушениях в обмене веществ, с чем стоит обратиться к доктору.

Нейтральные липиды

Нейтральные липиды представляют собой сложные эфиры высших жирных кислот и спиртов (высших одноатомных, глицерина, холестерина и др). Наиболее важными из них являются триацилглицериды и воски.

Триацилглицериды

Триацилглицериды – это сложные эфиры глицерина и высших жирных кислот.

Общая формула:

Простые триацилглицериды содержат остатки одинаковых, смешанные – разных жирных кислот. Названия триацилглицеридов строятся на основе названий ацильных остатков, входящих в их состав жирных кислот.

Смешанные триацилглицериды могут содержать хиральный атом углерода в положении 2 и иметь энантиомеры, например:

Для их обозначения используется стереоспецифическая нумерация (sn). Если в проекции Фишера группа ОН (или ее производное) при С2находятся слева, то атому С над ней присваивается номер 1, а под ней – номер 3 и наоборот, например:

Триацилглицериды – малополярные, не растворимые в воде вещества, так как их молекулы не содержат сильнополярных или заряженных групп. Триацилглицериды, содержащие преимущественно остатки ненасыщенных кислот, при обычных условиях являются жидкостями, насыщенных кислот – твердыми веществами. Они входят в состав животных жиров и растительных масел, которые представляют собой смеси триацилглицеридов. Животные жиры содержат в основном триацилглицериды с остатками насыщенных кислот и поэтому имеют твердую консистенцию. Растительные масла включают в основном остатки ненасыщенных кислот и являются жидкостями. Основная биологическая функция триацилглицеридов – запасные вещества животных и растений.

Химические свойства триацилглицеридов определяются наличием сложноэфирной связи и ненасыщенностью. Как сложные эфиры триацилглицериды гидролизуются под действием кислот и щелочей, а также вступают в реакцию переэтерификации.

При щелочном гидролизе (омылении) жиров образуются соли жирных кислот (мыла). Их молекулы дифильны (содержат полярную “голову” и неполярный “хвост”), что обуславливает их повехностно-активные свойства и моющее действие.

По реакции переэтерификации получают смеси сложных эфиров жирных кислот, которые в отличие от самих кислот легко летучи и могут быть разделены путем перегонки или газожидкостной хроматографии. Далее путем гидролиза их превращают в индивидуальные карбоновые кислоты или используют в виде эфиров, например, в качестве лекарственных препаратов, восполняющих недостаток незаменимых жирных кислот в организме (лекарственный препарат линетол ).

Триацилглицериды, содержащие остатки ненасыщенных жирных кислот, вступают в реакции присоединения по двойной связи.

Реакция присоединения галогенов используется для определения содержания остатков ненасыщенных кислот в жирах. Количественной характеристикой степени ненасыщенности жиров служит иодное число – количество иода (в г), которое могут поглотить 100 г жира. У животных жиров иодное число меньше 70, у растительных масел больше 70.

Важным промышленным процессом является гидрогенизация жиров – каталитическое гидрирование растительных масел, в результате которого водород насыщает двойные связи, и жидкие масла превращаются в твердые жиры (маргарин). В процессе гидрогенизации происходит также изомеризация – перемещение двойных связей (при этом из полиненасыщенных кислот образуются кислоты с реакционноспособными, в том числе и в реакциях окисления, сопряженными двойными связями) и изменение их стереохимической конфигурации ( цис в транс ), а также частичное расщепление сложноэфирных связей. Существует мнение, что при этом образуются вещества небезопасные для организма. Наибольшей пищевой ценностью обладают растительные масла, которые наряду с незаменимыми жирными кислотами содержат необходимые для организма фосфолипиды, витамины, полезные фитостерины (предшественники витамина D) и практически не содержат холестерин.

Воски

Воски – это сложные эфиры жирных кислот и высших одноатомных спиртов (С12– С46). Воски входят в состав защитного покрытия листьев растений и кожи человека и животных

Они придают поверхности характерный блеск и водоотталкивающие свойства, что важно для сохранения воды внутри организма и создания барьера между организмом и окружающей средой

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector