Особенности мутационной изменчивости. виды мутаций
Содержание:
- Известные заболевания хромосомной природы
- Изменчивость хромосом в онтогенезе и эволюции
- Общие вопросы
- Проблемы методики
- Хромосомная нестабильность и метастазирование
- Делеции и дефишенси
- Симптомы, возникающие при синдроме ломкой Х-хромосомы
- Литература
- Хромосомная нестабильность и анеуплоидия
- 15.2. Гетероплоидия – изменение числа отдельных хромосом в кариотипе
- Literature
- Мутационная изменчивость. Классификация мутиций
- Как это касается других членов семьи
- Исследование хромосомных отклонений
- Кому это нужно?
- Физические факторы
Известные заболевания хромосомной природы
Одним из самых известных заболеваний, происходящих по причине наличия аномалий в генетическом материале, является синдром Дауна. Он обуславливается трисомией по 21 хромосоме. Характерным признаком этой болезни является отставание в развитии. Дети испытывают серьезные проблемы во время обучения в школе, часто им требуется альтернативная методика преподавания материала. Вместе с тем отмечаются нарушения физического развития – плоское лицо, увеличенные глаза, клинодактилия и другие. Если такие люди прикладывают значительные усилия, они могут достаточно хорошо социализироваться, известен даже случай успешного получения высшего образования мужчиной с синдромом Дауна. У больных повышен риск заболеть деменцией. Это и ряд других причин приводит к небольшой продолжительности жизни.
К трисомии относится и синдром Патау, только в этом случае имеется три копии 13 хромосомы. Для заболевания характерны множественные пороки развития, часто с полидактилией. В большинстве случаев отмечается нарушение деятельности центральной нервной системы либо ее неразвитость. Часто (примерно в 80 процентах) больные имеют пороки развития сердца. Тяжелые нарушения приводят к высокой смертности – в первый год жизни умирает до 95% детей с этим диагнозом. Заболевание не поддается лечению или коррекции, как правило, можно лишь обеспечить достаточно постоянный контроль состояния человека.
Еще одна форма трисомии, с которой рождаются дети, относится к 18 хромосоме. Заболевание в этом случае носит название синдрома Эдвардса и характеризуется множественными нарушениями. Деформируются кости, часто наблюдается измененная форма черепа. Сердечно-сосудистая система обычно с пороками развития, также проблемы отмечаются с органами дыхания. В результате около 60% детей не доживают до 3 месяцев, к 1 году умирает до 95% детей с этим диагнозом.
Трисомия по другим хромосомам у новорожденных практически не встречается, поскольку почти всегда приводит к преждевременному прерыванию беременности. В части случаев рождается мертвый ребенок.
С нарушениями числа половых хромосом связан синдром Шерешевского-Тернера. Из-за нарушений в процессе расхождения хромосом теряется X-хромосома в женском организме. В результате организм не получает должного количества гормонов, поэтому нарушается его развитие. В первую очередь это относится к половым органам, которые развиваются лишь отчасти. Практически всегда для женщины это обозначает невозможность иметь детей.
У мужчин полисомия по Y или X хромосоме приводит к развитию синдрома Клайнфельтера. Для этого заболевания характерна слабая выраженность мужских признаков. Зачастую сопровождается гинекомастией, возможно отставание в развитии. В большинстве случаев наблюдаются ранние проблемы с потенцией и бесплодие. В этом случае, как и для синдрома Шерешевского-Тернера, выходом может стать экстракорпоральное оплодотворение.
Изменчивость хромосом в онтогенезе и эволюции
Постоянство числа хромосом в хромосомном наборе и структуры каждой хромосомы — непременное условие нормального развития в онтогенезе (см.) и сохранения биол. вида. В течение жизни организма могут происходить изменения числа отдельных хромосом и даже их гаплоидных наборов (геномные мутации) или структуры хромосом (хромосомные мутации). Необычные варианты хромосом, обусловливающие уникальность хромосомного набора индивидуума, применяются в качестве генетических маркеров (маркерных хромосом). Геномные и хромосомные мутации играют важную роль в эволюции биол. видов. Данные, полученные при изучении хромосом, вносят большой вклад в систематику видов (кариосистематику). У животных одним из главных механизмов эволюционной изменчивости является изменение числа и структуры отдельных хромосом
Важное значение имеет также изменение содержания гетерохроматина в отдельных или нескольких хромосомах. Сравнительное изучение хромосом человека и современных человекообразных обезьян позволило на основании сходства и различия индивидуальных хромосом установить степень филогенетического родства этих видов и смоделировать кариотип их общего ближайшего предка.
Библиогр.:
Бочков Н. П., Захаров А. Ф. и Иванов В. И. Медицинская генетика, М., 1984; Дарлингтон С. Д. и Ла Кур Л. Ф. Хромосомы, Методы работы, пер. с англ., М., 1980, библиогр.; Захаров А. Ф. Хромосомы человека (проблемы линейной организации;, М., 1977, библиогр.; Захаров А. Ф. и др. Хромосомы человека, Атлас, М., 1982; Кикнадзе И. И. Функциональная организация хромосом, Л., 1972, библиогр.; Основы цитогенетики человека, под ред. А. А. Прокофьевой-Бельговской, М., 1969: Суонсо н К., Мерц Т. и Янг У. Цитогенетика, пер. с англ., М., 1969; Cell biology, A comprehensive treatise, ed. by L. Goldstein a. D. M. Prescott, p. 267, N. Y. a. o., 1979; Seuanez H. N, The phylogeny of human chromosomes, v. 2, B. a. o. 1979; Sharm a A. K. a. Sharma A. Chromosome techniques, L. a. o., 1980; ThermanE. Human chromosomes, N. Y. a. o., 1980.
Общие вопросы
Интенсивное развитие генетики в течение последних десятилетий позволило развить отдельное направление хромосомной патологии, которая постепенно приобретает все большое значение. К этой области относятся не только хромосомные болезни, но и различные нарушения во время внутриутробного развития (к примеру, выкидыши). В настоящее время счет аномалий идет уже на 1000. Свыше ста форм характеризуются клинически очерченной картиной и называются синдромами.
Выделяется несколько групп болезней. Триплоидией называется случай, при котором в клетках организма имеется лишняя копия генома. Если же появился дубликат только одной хромосомы, то подобное заболевание называется трисомией. Также причинами аномального развития организма могут быть делеции (удаленные участки генетического кода), дупликации (соответственно, лишние копии генов или их групп) и иные дефекты. Английский врач Л. Даун в 1866 году описал одну из самых известных болезней такого рода. Синдром, получивший его имя, развивается при наличии лишней копии 21 хромосомы (трисомия-21). Трисомии по другим хромосомам, как правило, заканчиваются выкидышами или приводят к смерти в детском возрасте из-за серьезных нарушений в развитии.
Позже были открыты случаи моносомии по X-хромосоме. В 1925 году Шерешевский Н.А и в 1938 году Тернер Г. описали его симптомы. Трисомия-XXY, которая встречается у мужчин, была описана Клайнфельтером в 1942 году.
Указанные случаи заболеваний стали первыми объектами исследований в этой области. После того, как расшифровали этиологию трех перечисленных синдромов, фактически появилось направление хромосомных болезней. В течение 60-х годов дальнейшие цитогенетические исследования привели к формированию клинической цитогенетики. Ученые доказали связь между патологическими отклонениями и хромосомными мутациями, а также получили статистические данные о частоте появления мутаций у новорожденных и в случаях самопроизвольного прерывания беременности.
Проблемы методики
Опухоли неоднородны. Они состоят из разных клеток, которые могут отличаться весьма значительно. И, например, в 80% клеток опухоли мутация определенного гена присутствует, а 20% клеток поделились с другим распределением хромосом — и остались немутировавшими. Да, мы назначаем препарат по результатам молекулярно-генетического теста, и против 80% опухолевых клеток он сработает эффективно, но для оставшихся 20% нужно будет придумывать другое лечение.
Некоторые виды рака более-менее гетерогенны, например, РМЖ. А некоторые опухоли, такие как саркомы, напоминают по структуре винегрет. Это затрудняет и диагностику, и лечение: нельзя заранее узнать, в какой части опухоли какие клетки, сколько их видов, как сильно они отличаются. И нельзя, грубо говоря, взять 10 образцов из разных мест опухоли — по ним придется сделать 10 отдельных генетических исследований.
До 30% таргетных и иммунопрепаратов в России назначается без соответствующего обоснования — без исследований генетики опухоли. И часть этих лекарств оказывается пустой тратой средств бюджета и денег пациента, потому что назначать таргетное лечение без понимания генетики опухоли — это рулетка: зарегистрировано более 600 препаратов. Например, для рака молочной железы есть пять протоколов лечения, в зависимости от мутации гена HER2/Neu.
В западной медицине определение генетического профиля опухоли уже становится стандартом лечения. Для российских онкопациентов молекулярно-генетические тестирования — все еще редкий случай, к сожалению — для бюджетной медицины это пока дорого. Но есть надежда, что все изменится к лучшему. Если сейчас оно стоит 600 тыс. руб., то 5 лет назад стоило больше миллиона — технология становится все проще и совершеннее, а, значит, популярнее и доступнее. Здесь время работает на нас.
Большинство онкологов в России НЕ используют молекулярно-генетические тесты. Потому что не имеют достаточного опыта работы с ними и специфических знаний. Не получится просто открыть отчет и «списать» оттуда лечение
Нужно принимать во внимание множество факторов, понимать, как все эти многочисленные мутации влияют друг на друга, на рост опухоли, на потенциальную индивидуальную переносимость пациентом препарата и т. п
Поэтому мало просо сделать генетический тест, нужно уметь понять результаты и сделать верные выводы. Мы с коллегами чаще всего сначала изучаем отчет сами (бывает, приходится посидеть над ним дома, в тишине после работы) — а потом еще и собираем консилиум, принимаем коллегиальное решение.
Необходимо продумывать комбинации из таргетных препаратов, уметь сочетать их химиотерапевтическими лекарствами, предусматривать возможные побочные эффекты таких «коктейлей». Это довольно сложная задача — и врач должен быть очень мотивирован постоянно учиться.
Но хорошие истории пациентов, честно говоря, всегда мотивируют лучше всего.
Сейчас у нас есть пациентка, 48 лет, с рецидивирующей глиобластомой (агрессивная опухоль мозга). К нам она попала после того, как прошла две линии терапии в государственном онкоцентре. Там все делали правильно, проводили лучевую терапию и назначали таргетный препарат, но опухоль все равно вернулась. Женщине отвели полгода жизни.
Мы предложили ей полное молекулярно-генетическое тестирование. Да, оно стоит 600 тыс. рублей, сокращенный вариант, за 250, в ее случае не подошел — нужно было расширенное тестирование, с максимально полным набором мутаций.
Но по результатам обследования назначили ей препарат, который предназначен обычно для лечения немелкоклеточного рака легкого. Он эффективен против опухолей с мутацией EGRF — у нашей пациентки глиобластома была именно с этой мутацией.
Женщина ходит к нам лечиться и наблюдаться уже 4 года. Это в 5 раз дольше, чем при стандартной терапии. Причем, она самостоятельна, живет эти 4 года обычной жизнью, ходит на работу и собирается дождаться внуков.
Так что, хоть нам в «Медицине 24/7» и приходится все время держать мозги в тонусе, разбираться в новых и новых исследованиях генетических мутаций — результаты определенно того стоят.
Будьте здоровы.
Материал подготовлен заместителем главного врача по лечебной работе клиники «Медицина 24/7», кандидатом медицинских наук Сергеевым Петром Сергеевичем.
Хромосомная нестабильность и метастазирование
Недавняя работа определила хромосомную нестабильность (CIN) как геномный драйвер метастазирования. Ошибки сегрегации хромосом во время митоза приводят к образованию структур, называемых микроядрами. Эти микроядра, которые находятся за пределами основного ядра, имеют дефектные оболочки и часто разрываются, обнажая содержимое своей геномной ДНК в цитоплазме. Воздействие двухцепочечной ДНК на цитозоль активирует антивирусные пути, такие как цитозольный путь зондирования ДНК cGAS-STING. Этот путь обычно участвует в клеточной иммунной защите от вирусных инфекций. Опухолевые клетки захватывают хроническую активацию врожденных иммунных путей и распространяются на отдаленные органы, что позволяет предположить, что CIN вызывает метастазирование за счет хронического воспаления, возникающего внутри раковых клеток.
Делеции и дефишенси
Делецией, или нехваткой, называется потеря некоторого участка хромосомы. Именно делеция была первым примером хромосомной перестройки, обнаруженным в 1917 г. Бриджесом с помощью генетического анализа. Эта делеция фенотипически проявляется в зазубренности края крыла у дрозофилы называется мутацией Notch . Показано, что данная мутация сцеплена с полом, доминанта, в гомозиготном состоянии летальна. Самки, гетерозиготные по Notch , имеют мутантный фенотип, а гомозиготные по этой мутации самки и гемизиготные самцы нежизнеспособны.
Аллель white в присутствии Notch в гомологичной хромосоме ведет себя как доминантный. Другие рецессивные гены, расположенные по соседству с white в Х-хромосоме, также становятся как бы «доминантными» в присутствии Notch . Такая кажущаяся доминантность рецессивных генов называется псевдодоминантностью , поскольку она возникает лишь при утрате некоторого участка гомологичной хромосомой, в результате чего отсутствует аллель, комплементарный рецессивной мутации. Псевдодоминирование служит одним из способов выявления делеций.
Делеции обычно летальны в гомозиготе, что указывает на выпадение каких-либо жизненно важных генов. Очень короткие делеции могут не нарушать жизнеспособности в гомозиготе.
Концевые нехватки, или дефишенси, устанавливают по тем же критериям, однако вследствие их расположения при конъюгации не образуется петля, а одна хромосома оказывается короче другого. Примеры дефишенси известны у многих организмов, включая человека. Тяжелое наследственное заболевание синдром кошачьего крика , названное так по характеру звуков, издаваемых больными младенцами, обусловлено по дефишенси в 5-й хромосоме. Этот синдром сопровождается умственной отсталостью. Обычно дети с таким синдромом рано умирают.
При отделении фрагмента хромосомы он, как правило, теряется, если не содержит центромеры. Фрагмент, содержащий центромеру, реплицируется и его копии нормально распределяются при клеточных делениях. Фрагменты хромосом не теряются и в случае диффузной центромеры. В этом случае могут возникнуть две телометрические хромосомы.
Большие возможности для выявления делеций, дефишенси и других хромосомных аберраций открывает метод дифференциальной окраски хромосом . Он основан на том, что некоторые красители, например краситель Гимза, дифференциально окрашивают разные участки хромосом. Благодаря этому хромосомы приобретают характерную поперечную исчерченность. Таким методом определяют хромосомные перестройки в метафазных хромосомах.
Симптомы, возникающие при синдроме ломкой Х-хромосомы
Отсутствие или снижение уровня функционального белка FMRP, вызванное мутацией гена FMR1, приводит к симптомам заболевания, которые постепенно развиваются от рождения до полового созревания.
У новорожденных и младенцев мужского пола, страдающих синдромом FraX:
- низкий вес при рождении;
- небольшая окружность головы;
- увеличенный объем яичка;
- большие ушные раковины;
- мышечная гипотензия (снижение мышечного тонуса).
У детей наблюдается следующее:
- нарушения речи;
- задержка психомоторного развития;
- симптомы аутизма (например, боязнь общения, кусание рук, нарушение осязания).
У взрослых мужчин бывают:
- черепно-лицевые деформации (большие ушные раковины, большая нижняя челюсть, высокое небо);
- бледно-голубые радужные оболочки также характерны для синдрома ломкой Х-хромосомы;
- увеличение яичек;
- деформация позвоночника;
- широкие руки;
- короткие пальцы;
- эпилептические припадки.
Среднее значение IQ у мужчин с полной мутацией составляет около 40 – они демонстрируют нарушение координации глаз и рук, нарушение памяти или трудности с решением проблем.
У женщин с полной мутацией симптомы намного слабее, чем у мужчин, и связаны в первую очередь с повышенным риском эмоциональных расстройств.
Больные женщины:
- имеют IQ в пределах нормы или проявляют признаки умеренной умственной отсталости (IQ около 50-69);
- в среднем у 35% из них наблюдаются такие симптомы, как черепно-лицевые изменения, замедленность движений, проблемы с произношением определенных слов или нарушения концентрации внимания.
Нарушение концентрации внимания
Однако у некоторых женщин с полной мутацией симптомы могут вообще не проявляться из-за избирательной инактивации аномальной Х-хромосомы.
У носителей болезни обычно нет симптомов, подтверждающих их носительство. Некоторые женщины (около 20% носителей) испытывают преждевременное снижение функции яичников, что вызывает бесплодие у женщин, так как оно связано с более ранней менопаузой (до 40 лет). У некоторых мужчин с перестановкой могут развиться неврологические проблемы (нарушение памяти, судороги).
Литература
- Баранов В. С., Кузнецова Т. В. Цитогенетика эмбрионального развития человека: научно-практические аспекты // СПб.: Научная литература, 2007. — С. 252—310.
- Ворсанова С. В., Юров Ю. Г., Чернышов В. Н. Медицинская цитогенетика // Москва, 2006. — С. 219—222.
- Biancotti J. C. Human embryonic stem cells as models for aneuploid chromosomal syndromes // Stemvcells. — 2010. — Vol. 28. — P. 1530—1540.
- Bricker L. Types of pregnancy loss in recurrent miscarriage: implications for research and clinical practice // Hum. Reprod., 2002. — Vol. 17, N 5. — P. 1345—1350.
- Carrell D. T. The clinical implementation of sperm chromosome aneuploidy testing: pitfalls and promises // J Androl.,2008. — Vol. 29(2). — P. 124—33.
- Gersen S. L. The principles of clinical Cytogenetics // New York: Springer, 2013. — P. 275—292.
- Harper J. C. Preimplantation genetic diagnosis // CambridgeUniversity Press, 2009. — Р. 95—116.
- Harton G. L. at al. ESHRE PGD Consortium/Embryology Special Interest Group. Best practice guidelines for polar body and embryo biopsy for preimplantation genetic diagnosis/screening (PGD/PGS) // Human Reproduction, 2010. — Vol. 1. — P. 1—8.
- Nielsen J. Chromosome abnormalities found among 34,910 newborn children: results from a 13-year incidence study in Arhus, Denmark // Hum Genet., 1991. — Vol. 87(1). — P. 81—3.
- McKinlay R. J. Chromosome abnormalities and genetic counseling // New York: Oxford University Press, Inc., 2012, — P. 27—66, P. 377—402.
Хромосомная нестабильность и анеуплоидия
КИН часто приводит к анеуплоидии . Есть три способа возникновения анеуплоидии. Это может произойти из-за потери всей хромосомы, приобретения целой хромосомы или перестройки частичных хромосом, известной как грубые хромосомные перестройки (GCR). Все это признаки некоторых видов рака . Большинство раковых клеток являются анеуплоидными, что означает, что они имеют ненормальное количество хромосом, которые часто имеют значительные структурные аномалии, такие как хромосомные транслокации, когда участки одной хромосомы обмениваются или прикрепляются к другой. Изменения плоидности могут изменять экспрессию протоонкогенов или генов-супрессоров опухолей.
Сегментарная анеуплоидия может возникать из-за делеций, амплификаций или транслокаций, которые возникают из-за разрывов ДНК, в то время как потеря и увеличение целых хромосом часто происходит из-за ошибок во время митоза.
15.2. Гетероплоидия – изменение числа отдельных хромосом в кариотипе
Генные мутации встречаются наиболее часто. Причины генных мутаций:
1) выпадение нуклеотида;
2) вставка лишнего нуклеотида (эта и предыдущая причины приводят к сдвигу рамки считывания);
3) замена одного нуклеотида на другой.
2. Сцепление генов и кроссинговер
Гены, локализованные в одной хромосоме, образуют группу сцепления и наследуются, как правило, вместе.
Число групп сцепления у диплоидных организмов равно гаплоидному набору хромосом. У женщин – 23 группы сцепления, у мужчин – 24.
Сцепление генов, расположенных в одной хромосоме, может быть полным и неполным. Полное сцепление генов, т. е. совместное наследование, возможно при отсутствии процесса кроссинго-вера. Это характерно для генов половых хромосом, гетеро-гаметных по половым хромосомам организмов (ХУ, ХО), а также для генов, расположенных рядом с центромерой хромосомы, где кроссинговер практически никогда не происходит.
В большинстве случаев гены, локализованные в одной хромосоме, сцеплены не полностью, и в профазе I мейоза происходит обмен идентичными участками между гомологичными хромосомами. В результате кроссинговера аллельные гены, бывшие в составе групп сцепления у родительских особей, разделяются и формируют новые сочетания, попадающие в гаметы. Происходит рекомбинация генов.
Гаметы и зиготы, содержащие рекомбинации сцепленных генов, называют кроссоверными. Зная число кроссоверных гамет и общее количество гамет данной особи, можно вычислить частоту кроссинговера в процентах по формуле: отношение числа кроссоверных гамет (особей) к общему числу гамет (особей) умножить на 100 %.
По проценту кроссинговера между двумя генами можно определить расстояние между ними. За единицу расстояния между генами – морганиду – условно принят 1 % кроссинговера.
Частота кроссинговера говорит и о силе сцепления между генами. Сила сцепления между двумя генами равна разности между 100 % и процентом кроссинговера между этими генами.
Генетическая карта хромосомы – это схема взаимного расположения генов, находящихся в одной группе сцепления. Определение групп сцепления и расстояний между генами не является конечным этапом построения генетической карты хромосомы, поскольку необходимо установить также соответствие изучаемой группы сцепления определенной хромосоме. Определение группы сцепления осуществляется гибридологическим методом, т. е. путем изучения результатов скрещивания, а исследование хромосом – цитологическим методом с проведением микроскопического исследования препаратов. Для определения соответствия данной группы сцепления конкретной хромосоме применяют хромосомы с измененной структурой. Выполняют стандартный анализ дигибридного скрещивания, в котором один исследуемый признак кодируется геном, локализованным на хромосоме с измененной структурой, а второй – геном, локализованным на любой другой хромосоме. В случае если наблюдается сцепленное наследование этих двух признаков, можно говорить о связи данной хромосомы с определенной группой сцепления.
Анализ генетических и цитологических карт позволил сформулировать основные положения хромосомной теории наследственности.
1. Каждый ген имеет определенное постоянное место (локус) в хромосоме.
2. Гены в хромосомах располагаются в определенной линейной последовательности.
3. Частота кроссинговера между генами прямо пропорциональна расстоянию между ними и обратно пропорциональна силе сцепления.
Предыдущая |
Literature
- Baranov V. S., Kuznecova T. V. Citogenetika jembrional’nogo razvitija cheloveka: nauchno-prakticheskie
aspekty // SPb.: Nauchnaja literatura, 2007. — S. 252—310. - Vorsanova S. V., Jurov Ju. G., Chernyshov V. N. Medicinskaja citogenetika // Moskva, 2006. — S. 219—222.
- Biancotti J. C. Human embryonic stem cells as models for aneuploid chromosomal syndromes // Stem cells. — 2010. — Vol. 28. — P. 1530—1540.
- Bricker L. Types of pregnancy loss in recurrent miscarriage: implications for research and clinical practice // Hum. Reprod., 2002. — Vol. 17, N 5. — P. 1345—1350.
- Carrell D. T. The clinical implementation of sperm chromosome aneuploidy testing: pitfalls and promises // J Androl.,2008. — Vol. 29(2). — P. 124—33.
- Gersen S. L. The principles of clinical Cytogenetics // New York: Springer, 2013. — P. 275—292
- Harper J. C. Preimplantation genetic diagnosis // CambridgeUniversity Press, 2009. — Р. 95—116.
- Harton G. L. at al. ESHRE PGD Consortium/Embryology Special Interest Group. Best practice guidelines for polar body and embryo biopsy for preimplantation genetic diagnosis/screening (PGD/PGS) // Human Reproduction, 2010. — Vol. 1. — P. 1—8.
- Nielsen J. Chromosome abnormalities found among 34,910 newborn children: results from a 13-year incidence study in Arhus, Denmark // Hum Genet., 1991. — Vol. 87(1). — P. 81—3.
- McKinlay Gardner R. J. Chromosome abnormalities and genetic counseling // New York: Oxford University Press, Inc., 2012, — P. 27—66, P. 377—402.
Библиографическая ссылка
Гонтарь Ю. В., Ильин И. Е., Будерацкая Н. А., Связь количественных хромосомных аномалий сперматозоидов и преимплантационных эмбрионов // «Живые и биокосные системы». — 2014. — № 8; URL: http://www.jbks.ru/archive/issue-8/article-11.
Мутационная изменчивость. Классификация мутиций
В этом случае наблюдаются потеря (делеция) или удвоение части (дупликация) генетического материала одной или нескольких хромосом, изменение ориентации сегментов хромосом в отдельных хромосомах (инверсия), а также перенос части генетического материала с одной хромосомы на другую (транслокация) (крайний случай — объединение целых хромосом.
На генном уровне изменения первичной структуры ДНК генов под действием мутаций менее значительны, чем при хромосомных мутациях, однако генные мутации встречаются более часто.
В результате генных мутаций происходят замены, делеции и вставки одного или нескольких нуклеотидов, транслокации, дупликации и инверсии различных частей гена. В том случае, когда под действием мутации изменяется лишь один нуклеотид, говорят о точечных мутациях
Антимутационные механизмы обеспечивают обнаружение, устранение или подавление активности онкогенов. Реализуются антимутационные механизмы при участии онкосупрессоров и систем репарации ДНК.
Человек как объект генетических исследований.
Цитогенетический метод; его значение для диагностики хромосомных синдромов. Правила составления идиограмм здоровых людей. Идиограммы при хромосомных синдромах(аутосомные и гоносомных).
Примеры.
Человек, как объект генетических исследований представляет сложность:
- Нельзя принимать гибридологический метод.
- Медленная смена поколения.
- Малое кол-во детей.
- Большое число хромосомю
Цитигенетический метод (основан на изучеии кариотипа).
Кариотип изучают на метофазных пластинках в культуре лимфаитов крови. Метод позволяет диагностировать хромосомные болезни, появляющиеся в результате геномных и хромосомных мутаций.
Цитологический контроль необходим для диагностики хромо-сомных болезней, связанных с ансуплоидией и хромосомными мутациями. Наиболее часто встречаются болезнь Дауна(трисомия по 21-й хромосоме), синдром Клайнфелтера (47 XXY), синдром Шершевского — Тернера (45 ХО) и др.
Потеря участка одной из гомологичных хромосом 21-й пары приводит к заболеванию крови — хроническому миелолейкозу.
При цитологических исследованиях интерфазных ядер со-матических клеток можно обнаружить так называемое тельце Барри, или половой хроматин.
Оказалось, что половой хроматин в норме есть у женщин и отсутствует у мужчин. Он представляет собой результат гетерохроматизации одной из двух Х-хромосом у женщин. Зная эту особенность, можно идентифицировать половую принадлежность и выявлять аномальное количество Х-хромосом.
Выявление многих наследствен-ных заболеваний возможно еще до рождения ребенка.
Метод пренатальной диагностики заключается в получении околоплодной жидкости, где находятся клетки плода, и в последующем биохимическом и цитологическом определении возможных наследственных аномалий. Это позволяет поставить диагноз на ранних сроках беременности и принять решение о се продолжении или прерывании
Биохимический метод изучения генетики человека; его значение для диагностики наследственных болезней обмена веществ. Роль транскрипционных, посттранскрипционных и посттрансляционных модификаций в регуляции клеточного обмена.
Как это касается других членов семьи
Если у одного из членов семьи обнаружена хромосомная перестройка, возможно, Вы захотите обсудить этот вопрос с
другими членами семьи. Это даст возможность другим родственникам, при желании, пройти обследование (анализ
хромосом в клетках крови) для определения носительства хромосомной перестройки
Это может быть особенно важно для
родственников, уже имеющих детей или планирующих беременность. Если они не являются носителями хромосомной
перестройки, они не могут передать ее своим детям
Если же они являются носителями, то им могут предложить пройти
обследование во время беременности для анализа хромосом плода.
Некоторым людям сложно обсуждать проблемы, связанные с хромосомной перестройкой, с членами семьи. Они могут
бояться причинить беспокойство членам семьи. В некоторых семьях люди из-за этого испытывают сложности в общении и
теряют взаимопонимание с родственниками. Врачи-генетики, как правило, имеют большой опыт в решении подобных
семейных ситуаций и могут помочь Вам в обсуждении проблемы с другими членами семьи.
Исследование хромосомных отклонений
Первые исследования эффектов от хромосомных нарушений стали проводить в 60-х годах, после того как был установлен хромосомный характер некоторых заболеваний. Можно условно выделить две большие группы связанных эффектов: врожденные пороки развития и изменения, вызывающие летальные исходы. Современная наука располагает сведениями, что хромосомные аномалии начинают проявляться уже на стадии зиготы. Летальные эффекты при этом являются одной из основных причин гибели плода в утробе (этот показатель у человека достаточно высок).
Хромосомные аберрации – это изменение структуры хромосомного материала. Они могут как возникать спорадически, так и передаваться по наследству. Точная причина, по которой они появляются, не установлена. Ученые полагают, что за некоторую часть таких мутаций отвечают различные факторы окружающей среды (например, химически активные вещества), которые воздействуют на эмбрион или даже на зиготу. Интересен тот факт, что большая часть хромосомных аберраций обычно связана с хромосомами, которые зародыш получает от отца.
Значительная часть хромосомных аберраций встречается очень редко и была обнаружена один раз. В то же время некоторые другие достаточно часто встречаются, причем даже у людей, не связанных родственными узами. К примеру, широко распространена транслокация центромерных или близких к ним районов 13 и 14 хромосом. Утрата неактивного хроматина коротких плеч практически не влияет на состояние здоровья. При аналогичных робертсоновских транслокациях в кариотип попадает 45 хромосом.
Примерно две трети всех обнаруживаемых у новорожденных хромосомных аномалий компенсируются за счет других копий генов. По этой причине они не несут серьезной угрозы нормальному развитию ребенка. Если же компенсация нарушения невозможна, возникают пороки развития. Часто такая несбалансированная аномалия выявляется у больных с умственной отсталостью и другими врожденными пороками, а также у плода после самопроизвольных абортов.
Известны компенсированные аномалии, которые способны наследоваться из поколения в поколение без возникновения заболеваний. В некоторых случаях такая аномалия может перейти в несбалансированную форму. Так, если имеется транслокация, затрагивающая 21 хромосому, возрастает риск трисомии по ней. По статистике такие транслокации имеются у каждого 20 ребенка, у которого зафиксирована трисомия-21, причем в каждом пятом случае аналогичное нарушение есть у одного из родителей. Поскольку большая часть детей с вызванной транслокацией трисомией-21 рождается у молодых (менее 30 лет) мам, то в случае обнаружения этого заболевания у ребенка необходимо произвести диагностическое обследование молодых родителей.
Риск появления нарушений, которые не компенсируются, сильно зависит от транслокации, поэтому теоретические расчеты затруднены. Тем не менее, приблизительно определить вероятность соответствующей патологии можно на основании статистических данных. Такая информация собрана для распространенных транслокаций. В частности, робертсоновская транслокация между 14 и 21 хромосомами у матери с вероятностью 2 процента приводит к трисомии-21 у ребенка. Эта же транслокация у отца передается по наследству с вероятностью 10%.
Кому это нужно?
Тем, у кого развилась резистентность опухоли или непереносимость ко всем препаратам из стандартного протокола лечения. Ситуация, когда «все перепробовали — не помогло».
В принципе, нынешние стандарты лечения, особенно европейские и американские протоколы (NCCN), которые мы применяем в «Медицине 24/7», обладают хорошим терапевтическим потенциалом — не зря они считаются «золотым стандартом» лечения в онкологии.
По этим стандартам, сначала назначают препараты 1-й линии терапии — те, что статистически лучше всего помогают при данном диагнозе. Смотрят динамику. Если опухоль не реагирует на лечение или — что хуже — прогрессирует — переходят к препаратам 2-й линии — тем, что по результатам исследований давали чуть менее успешное лечение. Если эти препараты тоже перестают помогать — идем к 3-й линии, и т. д. Многим пациентам длины этой «цепи» хватает до конца жизни.
Но регулярно, к сожалению, врачи оказываются в тупике: в ситуации, когда все линии «протокольной» терапии закончились, а пациент жив и прогрессирует. Коварство раковых опухолей — в их изменчивости. Они очень быстро мутируют дальше, и приспосабливаются к любым условиям, к любым препаратам. Для пациента это означает развитие резистентности — все препараты, прописанные в протоколах лечения, перестали действовать на его опухоль.
Нужно продолжать лечение — а у врача закончились «инструменты», предписанные официальными стандартами лечения. Есть другие препараты, есть право назначить их off-label, вне стандартных линий терапии. Но как узнать, какое лекарство выбрать?
В этом случае молекулярно-генетическое исследование и дает нам понимание, какой препарат будет эффективен против данной опухоли, именно с этим набором мутаций. Назначение такого препарата позволяет выиграть главный для онкопациента ресурс — время.
Физические факторы
На строение наследственного аппарата оказывают влияние разнообразные физические факторы, механизм повреждающего действия которых не до конца понятен. Считается, что под влиянием этих факторов возникают разрывы между отдельными нуклеиновыми кислотами. Появляются ошибки в последовательности аминокислот, а в дальнейшем изменения свойств белков. К основным физическим мутагенам относятся:
- ионизирующая радиация (рентгеновское и гамма-излучение),
- продукты распада радиоактивных веществ (альфа-, бета-, гамма-, рентгеновское излучение),
- ультрафиолетовые лучи,
- экстремально низкие или высокие температуры.
Важно отметить, что любая хромосомная мутация может возникать под воздействием света видимого спектра. Это наблюдается у лиц со склонностью к фотосенсибилизации, на фоне приема некоторых лекарственных препаратов (антибиотики, мочегонные, антиаритмические, антидепрессанты) или при некоторых заболеваниях (псориаз, системная красная волчанка, острые вирусные заболевания)
Хромосомная мутация