Плазматическая мембрана: характеристики, строение и функции

Функции мембраны

Главными будут:

  1. защитная;
  2. переносная;
  3. механическая;
  4. матричная;
  5. перенос энергии;
  6. рецепторная.

Защита выражается в барьере между субъединицей и внешней средой. Пленка служит регулятором обмена между ними. В результате последний может быть активным, либо пассивным. Происходит избирательность необходимых веществ.

При транспортной функции через оболочку передаются соединения от одного механизма к другому. Именно этот фактор влияет на доставку полезных соединений, выведение продуктов метаболизма и распада, секреторные компоненты. Вырабатываются градиенты ионного характера, благодаря чему идет поддержка ph и уровень концентрации ионов.

Последние две миссии относятся к вспомогательным. Работа на матричном уровне направлена на правильное расположение белковой цепочки внутри полости, их грамотное функционирование. За счет механической фазы клетка обеспечена в автономном режиме.

Перенос энергии происходит в результате фотосинтеза в зеленых пластидах, дыхательных процессов в клеточках внутри полости. В работе участвуют также белки. За счет нахождения в мембране белки снабжают макроклетку способностью воспринимать сигналы. Импульсы переходят от одной клетки-мишени к остальным.

Элементарная мембрана состоит из бислоя липидов в комплексе с белками (гликопротеины: белки + углеводы, липопротеины: жиры + белки). Среди липидов можно выделить фосфолипиды, холестерин, гликолипиды (углеводы + жиры), липопротеины. Каждая молекула жира имеет полярную гидрофильную головку и неполярный гидрофобный хвост. При этом молекулы ориентированы так, что головки обращены кнаружи и внутрь клетки, а неполярные хвосты – внутрь самой мембраны. Этим достигается избирательная проницаемость для веществ, поступающих в клетку.

Выделяют периферические белки (они расположены только по внутренней или наружной поверхности мембраны), интегральные (они прочно встроены в мембрану, погружены в нее, способны менять свое положение в зависимости от состояния клетки). Функции мембранных белков: рецепторная, структурная (поддерживают форму клетки), ферментативная, адгезивная, антигенная, транспортная.

Схема строения элементарной мембраны жидкостно-мозаич-ная: жиры составляют жидкокристаллический каркас, а белки мозаично встроены в него и могут менять свое положение.

Важнейшая функция: способствует компартментации – подразделению содержимого клетки на отдельные ячейки, отличающиеся деталями химического или ферментного состава. Этим достигается высокая упорядоченность внутреннего содержимого любой эукариотической клетки. Компартментация способствует пространственному разделению процессов, протекающих в клетке. Отдельный компартмент (ячейка) представлен какой-либо мембранной органеллой (например, лизосомой) или ее частью (кристами, отграниченными внутренней мембраной митохондрий).

Другие функции:

1) барьерная (отграничение внутреннего содержимого клетки);

2) структурная (придание определенной формы клеткам в соответствии с выполняемыми функциями);

3) защитная (за счет избирательной проницаемости, рецепции и антигенности мембраны);

4) регуляторная (регуляция избирательной проницаемости для различных веществ (пассивный транспорт без затраты энергии по законам диффузии или осмоса и активный транспорт с затратой энергии путем пиноцитоза, эндо– и экзоцито-за, работы натрий-калиевого насоса, фагоцитоза));

5) адгезивная функция (все клетки связаны между собой посредством специфических контактов (плотных и неплотных));

6) рецепторная (за счет работы периферических белков мембраны). Существуют неспецифические рецепторы, которые воспринимают несколько раздражителей (например, холодовые и тепловые терморецепторы), и специфические, которые воспринимают только один раздражитель (рецепторы световос-принимающей системы глаза);

7) электрогенная (изменение электрического потенциала поверхности клетки за счет перераспределения ионов калия и натрия (мембранный потенциал нервных клеток составляет 90 мВ));

8) антигенная: связана с гликопротеинами и полисахаридами мембраны. На поверхности каждой клетки имеются белковые молекулы, которые специфичны только для данного вида клеток. С их помощью иммунная системы способна различать свои и чужие клетки.

Царство бактерий. Общее понятие | Учеба-Легко.РФ – крупнейший портал по учебе

Бактерии – типичные прокариотические организмы. Бактерии самые древние поселенцы земли, они живут уже два миллиарда лет. Ученым известно около 2 500 видов. Бактерии имеют клеточное строение, но не имеют ядра, отделенного мембраной от цитоплазмы.

Генетический материал у бактерий представлен пальцевыми молекулами ДНК длинной около 1 мм. Каждая такая молекула состоит из около 5 000 000 пар нуклеотидов. Плазматическая мембрана у бактериальной клетки по структуре и функциям не отличается от таковой эукариотической.

У некоторых бактерий плазматическая мембрана впячивается внутрь и образуются лизосомы – основная их функция – дыхание. Рибосомы в бактериальной клетке разбросаны по цитоплазме. На клеточной стенке некоторых бактерий имеются палочковидные белковые выступы – они необходимы для прикрепления клеток друг к другу.

Клеточная стенка придает бактериальной клетке жесткость и форму. Некоторые бактерии имеют слизистые слои – капсулы. Они служат дополнительной защитой для клеток.

Большинство бактерий не содержит хлорофилла и питается готовыми органическими веществами – гетеротрофно. Бактерии освоили все среды обитания. Они живут практически везде: в почве, в пыли, в воздухе, в воде, на теле животных, внутри живых организмов.

Они сохраняют свою жизнеспособность в горячих источниках при температуре 90 градусов С, в нефтяных скважинах на глубине 1 700 метров, на дне океана – глубже 10 километров. Некоторые бактерии выживают после пятидневного кипячения, в условиях вакуума. Многие бактерии могут жить без кислорода.

Численность бактерий огромна: в одном грамме плодородной почвы может находиться до 2 миллиардов бактерий.

Обратите внимание

Бактерии по форме разнообразны: шаровидные (кокки), палочковидные (бациллы), изогнутые (вибрионы), спиральные (спириллы), в виде цепочки (стрептококки), в виде гроздей (стафилококки). Некоторые бактерии имеют жгутики.

Бактерии очень быстро размножаются, каждые 20-30 минут. Теоретически их численность растет в геометрической прогрессии. Размножение ограничивается климатическими условиями, действием солнечного света, борьбой между видами, накоплением продуктов обмена.

В оптимальных условиях бактериальная клетка растет с огромной скоростью. Достигнув определенного размера, бактериальная клетка приступает к бесполому размножению, перед делением происходит удвоение генетического материала.

У самых быстрорастущих бактерий деление происходит через каждые 20 мин.

По способу добычи пищи гетеротрофные делятся на три группы: паразиты, сапрофиты и симбионты.

Симбиотические бактерии живут на корнях растений и снабжают их азотом, который способны усваивать только бактерии.

Кишечные бактерии обеспечивают нормальную работу пищеварительной системы.

Паразитические бактерии, или болезнетворные, способны выделять токсины (ядовитые вещества, воздействующие на определенные системы органов). Туберкулезная палочка, холерный вибрион вызывают тяжелые болезни и даже смерть. Для профилактики бактериальных заболеваний необходим строгий бактериологический контроль, соблюдение правил личной гигиены, предохранительные прививки.

Бактерии имеют очень важное значение для человека. Это обусловлено ролью микроорганизмов в биосфере

  • Плодородие почв. При жизнедеятельности почвенных бактерий происходит образование гумуса, который представляет собой разложившееся с помощью бактерий органическое вещество, содержащее все необходимые вещества для жизни растений. Кроме того, почвенные бактерии участвуют в круговороте различных веществ. Например, азота.
  • Очистка сточных вод. Для очистки сточных вод применяются микроорганизмы, которые в короткие сроки могут перевести большинство органических соединений в неорганические.
  • Бактерии симбионты. В кишечнике многих животных и человека обитает так называемая микрофлора, которая способна переваривать потребляемую организмом пищу и синтезируют витамины.
  • Промышленное брожение. Путем брожения человек может получать различные вещества, например, уксусная кислота, силос, спирт, кисломолочные продукты.
  • Производство антибиотиков. Эти вещества выделяются некоторыми бактериями и грибами. Эти вещества вызывают угнетение жизнедеятельности других бактерий.
  • Производство кормового белка.
  • Производство ферментов и генная инженерия. Возможность промышленно производить инсулин, получать спирты, кетоны, органические кислоты, полимерные вещества.
  • Биологические методы борьбы с вредителями, различные бактерии могут заражать и вызывать гибель вредителей сельского хозяйства.

Коммуникативная функция цитоплазматической мембраны

К числу коммуникативных функций стоит отнести транспорт и рецепцию. Эти оба качества характерны именно для плазматической мембраны и кариолеммы. Мембрана органелл не всегда имеет рецепторы или пронизана транспортными каналами, а у кариолеммы и цитолеммы эти образования имеются. Именно посредством их осуществляется реализация данных коммуникативных функций.

Транспорт реализуется двумя возможными механизмами: с затратой энергии, то есть активным путем, и без затрат, простой диффузией. Однако клетка может транспортировать вещества и путем фагоцитоза или пиноцитоза. Это реализуется путем захвата облака жидкости или твердой частицы выпячиваниями цитоплазмы. Тогда клетка как будто руками захватывает частицу или каплю жидкости, втягивая ее внутрь и образуя вокруг нее цитоплазматический слой.

Происхождение

Существует три теории происхождения эукариот:

  • симбиогенез;
  • инвагинагенез;
  • химерная теория.

Согласно симбиотической теории происхождения эукариоты возникли путём поглощения прокариот более крупными прокариотами. Этим объясняется нахождение наполовину автономных органелл (содержат ДНК) – митохондрий и пластид.

Инвагинационная теория предполагает, что эукариоты возникли путём впячивания мембраны внутрь прокариотической клетки. Из отделившихся пузырьков сформировались различные органеллы.

Химерное образование эукариот – слияние нескольких прокариот. Слившиеся клетки обменивались генетической информацией.

КЛЕТОЧНАЯ ТЕОРИЯ

Клеточная теория — одно из наиболее важных биологических обобощений, согласно которому все организмы имеют клеточное строение.

Клеточная теория возникла в результате анализа огромного количества фактического материала, который был получен в течение 200 лет. Изучение клетки стало возможным после открытия микроскопа.

1665 г. — Роберт Гук при помощи примитивного светового микроскопа увидел на срезе пробки крошечные «ячейки», которые он назвал клетками.

1671 г. — Мальпиги, Грю, Фонтана подтвердили исследования Гука на других биологических объектах. Ученые указывают на наличие клеточных стенок.

1677 г. — Левенгук усовершенствовал микроскоп. Отшлифованные вручную линзы давали увеличение в 275 раз. С помощью своего микроскопа Левенгук открыл одноклеточных животных.

В 19 веке были созданы микроскопы с увеличением в 1200 раз, с хорошим, четким изображением без искажения. Были открыты протоплазма и ядро. Знания накапливались, совершенствовалась техника микроскопирования. Опираясь на имеющиеся данные и собственные исследования немецкий ботаник Матиас Шлейден и зоолог Теодор Шванн в 1839 году почти одновременно, независимо друг от друга, пришли к выводу, что клетка является элементарной единицей строения всех растительных и животных организмов. М.Шлейден и Т.Шванн сформулировали основные положения клеточной теории, которая впоследствии развивалась многими учеными. Ошибки Шлейдена и Шванна заключались в следующем:

  1. они считали, что клетка образуется из бесструктурного вещества
  2. главная роль в клетке принадлежит ее оболочке.

Ошибки Шлейдена и Шванна были устранены работами немецкого паталогоанатома Рудольфа Вирхова. В частности он утверждал, что новая клетка образуется только в результате деления материнской клетки.

В последующий период клеточная теория обогащалась новым содержанием в связи с дальнейшим развитием цитологии.

Основные положения современной клеточной теории.

1.Все живые организмы состоят из клеток. Исключение — вирусы.

2.Клетка — наименьшая единица живого. Вне клетки жизни нет.

3.Клетки всех организмов сходны по строению и химическому составу.

4.Новые клетки возникают только путем деления ранее существовавших клеток.

5.Активность организма слагается из активности и взаимодействия составляющих его самостоятельных клеток.

6.Клеточное строение всех организмов говорит о единстве их происхождения.

Органеллы клетки

Органеллами называются мельчайшие структурные части, находящие внутри клетки и обеспечивающие ее строение и жизнедеятельность. К ним относится множество разных представителей:

  1. Плазматическая мембрана.
  2. Ядро и ядрышки с хромосомным материалом.
  3. Цитоплазма с включениями.
  4. Лизосомы.
  5. Митохондрии.
  6. ЭПС (эндоплазматический ретикулум).
  7. Комплекс Гольджи.
  8. Рибосомы.
  9. Вакуоли и хлоропласты, если клетка растительная.

Каждая из перечисленных структур имеет свое сложное строение, сформирована ВМС (высокомолекулярными веществами), выполняет строго определенные функции и принимает участие в комплексе биохимических реакций, обеспечивающих жизнедеятельность всего организма в целом.

Мембрана

Снаружи находится плазматическая мембрана эукариотической клетки или плазмалемма, которая осуществляет выборочную взаимосвязь органелл с внешней средой. Поверхностная мембрана имеет жидко-мозаичную структуру, образованную:

  • двумя слоями липидов (внешним и внутренним);
  • белками (60 % мембраны).

Липиды имеют гидрофильные головки и гидрофобные хвостики, которые обращены внутрь мембраны. Липиды плотно прилегают друг к другу, что обеспечивает мембране эластичность. Жёсткость придаёт встроенный в хвостики холестерин. Липиды защищают и ограничивают клетку.

Белки могут находиться на поверхности мембраны или быть интегрированными в неё.

В зависимости от вида белки осуществляют различные функции:

  • транспортную;
  • ферментативную;
  • рецепторную.

Рис. 1. Строение плазмалеммы.

Клетки растений сверху окружены жёсткой целлюлозной стенкой. У животных клеток поверхностный слой называется гликокаликсом, в состав которого входят углеводы, белки и жиры.

Движение цитоплазмы

Цитоплазма постоянно движется. Цитоскелет стабилизирует содержимое и, одновременно, перемещает органеллы внутри клетки с помощью белковых микротрубочек и нитей. С цитоплазматическим потоком перемещаются хромосомы и включения.

Примеры в клетках растений и животных

Есть отличия в строении цитоплазмы прокариот и эукариот. В клетках доядерных организмов наследственный материал расположен в цитоплазме. В клетках растений и животных в строении и функциях цитоплазмы больше общих признаков, чем отличий.

Таблица 2.

Сравнение клеток эукариот

Клетки растений

Клетки животных

Клетки грибов
  1. Одно ядро.
  2. Наличие пластид.
  3. Клеточная оболочка из целлюлозы.
  4. Запасное вещество — крахмал.
  5. Крупные вакуоли.
  1. Одно ядро.
  2. Отсутствие пластид.
  3. Клеточная оболочка отсутствует.
  4. Запасное вещество — гликоген.
  5. Вакуоли мелкие или отсутствуют.
  1. Два и более ядра.
  2. Отсутствие пластид.
  3. Клеточная оболочка из хитина.
  4. Запасное вещество — гликоген.
  5. Вакуоли мелкие или отсутствуют.

В цитоплазме растительной клетки микротрубочек больше, чем микрофиламентов, в животной клетке наоборот. В растительной клетке есть пластиды, вакуоли, целлюлозная клеточная оболочка, в животной клетке нет таких структур (рис. 4).

Рис. 4. Строение животной (А) и растительной (Б) клеток:  1 — клеточная оболочка; 2 — клеточная мембрана; 3 — аппарат Гольджи; 4 — клеточный центр;  5 — ядро; 6 — рибосомы; 7 — лизосомы; 8 — эндоплазматическая сеть;  9 — вакуоль; 10 — хлоропласт; 11 — митохондрии; 12 — цитоплазма

Пластиды — мембранные органеллы клетки, окрашенные в зеленый, оранжевый цвета, либо бесцветные. Вакуоли в растительной клетке нужны для накопления жидкого клеточного сока или других веществ. В клетках зрелого арбуза большая вакуоль оттесняет ядро и цитоплазму к плазматической мембране.

Цитоплазма — внутреннее полужидкое содержимое клетки, вместилище органелл и веществ. Состоит из цитозоля и опорных структур. Цитоплазма постоянно движется, способна изменять вязкость, поддерживает взаимосвязь между компонентами клетки.

Источники изображений: 

Рис. 4 —reader.lecta.rosuchebnik.ru/png

Пластиды

Пластиды (от др.-греч. Πλαστόс — вылепленный) — полуавтономные органеллы высших растений, водорослей и некоторых фотосинтезирующих простейших. Пластиды имеют от двух до четырёх мембран, собственный геном и белоксинтезирующий аппарат.

Согласно симбиогенетической теории пластиды, как и митохондрии, произошли в результате «захвата» древней цианобактерии предшественником эукариотической «хозяйской» клетки. При этом внешняя мембрана пластид соответствует плазматической мембране хозяйской клетки, межмембранное пространство — внешней среде, внутренняя мембрана пластид — мембране цианобактерии, а строма пластид — цитоплазме цианобактерии. Наличие трёх (эвгленовые и динофлагелляты) или четырёх (золотистые, бурые, жёлто-зелёные, диатомовые водоросли) мембран считается результатом двух- и трёхкратного эндосимбиоза соответственно.

Хлоропласты (от греч. Χλωρός — «зелёный») — зелёные пластиды, которые встречаются в клетках фотосинтезирующих эукариот. С их помощью происходит фотосинтез. Хлоропласты содержат хлорофилл.

В одной клетке листа может находиться 15—20 и более хлоропластов, а у некоторых водорослей — лишь 1 -2 гигантских хлоропласта (хроматофора) различной формы.

Хлоропласты ограничены двумя мембранами — наружной и внутренней. Наружная мембрана отграничивает жидкую внутреннюю гомогенную среду хлоропласта — строму (матрикс) В строме содержатся белки, липиды, ДНК (кольцевая молекула) , РНК, рибосомы и запасные вещества (липиды, крахмальные и белковые зерна), а также ферменты, участвующие в фиксации углекислого газа.

Внутренняя мембрана хлоропласта образует впячивания внутрь стромы — тилакоиды, которые имеют форму уплощенных мешочков (цистерн) . Несколько таких тилакоидов, лежащих друг над другом, образуют грану, и в этом случае они называются тилакоидами граны. Именно в мембранах тилакоидов локализованы светочувствительные пигменты, а также переносчики электронов и протонов, которые участвуют в поглощении и преобразовании энергии света.

Рисунок 10. Хлоропласты.

Строение

Плазматическая мембрана состоит из молекул трех основных видов — протеинов, углеводов и липидов. У разных типов клеток соотношение этих компонентов может различаться.

В 1972 году учеными Николсоном и Сингером был предложена жидкостно-мозаичная модель строения цитоплазматической мембраны. Эта модель послужила ответом на вопрос о строении клеточной мембраны и не утратила своей актуальности и по сей день. Суть жидкостно-мозаичной модели заключается в следующем:

  • Липиды располагаются в два слоя, составляя основу клеточной стенки;
  • Гидрофильные концы липидных молекул расположены внутрь, а гидрофобные — наружу;
  • Внутри эта структура имеет слой протеинов, которые пронизывают липиды подобно мозаике;
  • Кроме белков здесь имеется небольшое количество углеводов — гексоз;

Эта биологическая система отличается большой подвижностью. Белковые молекулы могут выстраиваться, ориентируясь к одной из сторон липидного слоя, или же свободно перемещаются и меняют свое положение.

Деление

Основным способом деления эукариот является митоз. Это непрямое деление клетки, включающее две стадии:

  • кариокинез – распределение ядерного содержимого между двумя клетками;
  • цитокинез – разделение органелл между дочерними клетками.

Деление начинается с удвоения центросомы и распада ядерной мембраны. Из хроматина образуются хромосомы, которые выстраиваются на клеточном экваторе. Прикреплённые микротрубочки веретена деления оттягивают части хромосом в разные стороны, где вокруг них образуется новая ядерная оболочка. Затем распределяются органеллы.

Рис. 3. Митоз.

Клетки животных разделяются перетяжкой. У растительных клеток формируется перегородка.

Структура цитолеммы

Почти все клеточные оболочки состоят из жиров нескольких классов. Чаще всего встречается холестерол, глико- и фосфолипиды. Последние состоят не только из липидов, но также имеют углеводное включение в виде «хвоста». Холестерол выполняет роль твердого жира, поскольку придает мембране жесткость, а также заполняет пространство между другими липидами.

Существуют более жесткие оболочки и эластичные, мягкие, в которых количество холестерола снижено. Помимо этого, вещество служит барьером, препятствуя переходу из клетки в клетку полярных молекул. Состав и ориентация протеинов в каждой мембране отличается, но специалисты определили, что без них пленка существовать не может.

В структуру плазмалеммы также входят аннулярные жиры, располагающиеся в непосредственной близости от протеинов и выделяющиеся вместе с ними из клетки. Без этих липидов протеины оболочки не могут выполнять свои функции. В большинстве случаев плазматическая мембрана асимметрична, то есть в разных ее частях количество липидов и протеинов отличается.

Каждая оболочка имеет органеллы. Они представляют собой участки цитоплазмы, связанные между собой. Наиболее часто встречаются следующие органеллы:

  • комплекс Гольджи;
  • вакуоли;
  • эндоплазматическая сеть;
  • лизосомы.

Разные клетки обладают индивидуальным составом органелл, но некоторые из них присутствуют в подавляющем большинстве единиц ткани. Благодаря своей структуре, мембраны способны к избирательной проницаемости. Некоторые вещества проходят через них свободно, другие — нет. Процесс регулируется самой оболочкой. Он может быть пассивным и активным. В первом случае в реакцию вступают интегральные белки, во втором требуются значительные энергетические затраты.

Функции плазматической мембраны

Белки плазматической мембраны выполняют различные функции, а это предопределяет соответствующие функции плазмалеммы: барьерную, транспортную, контактную, рецепторную и ферментативную.

Строение мембраны практически исключает диффузию через нее полярных молекул, в частности ионов. Поэтому плазматическая мембрана выполняет барьерную функцию. Однако через мембрану должна осуществляться транспортировка веществ как внутрь клетки, так и наружу. Это необходимо для снабжения клетки питательными веществами и выведения продуктов обмена.

Различают два типа транспортировки веществ: движение веществ, при котором не расходуется энергия АТФ, называется пассивным; движение, связанное с затратами энергии, называется активным. Самым простым вариантом пассивной транспортировки является простая диффузия (с места с большей концентрацией вещества в места с меньшей ее концентрацией). Таким образом сквозь мембрану проникают прежде всего неполярные молекулы

Так, из неорганических веществ через мембраны хорошо диффундируют кислород и углекислый газ — это имеет важное значение для клеточного дыхания, из органических веществ — стероидные вещества

Транспортировка через мембрану полярных веществ обеспечивают белковые молекулы-переносчики. Этот тип транспортировки играет важную роль в процессе возбудимости нервных и мышечных клеток и подобным процессам. Молекулы-переносчики необходимы для попадания в клетку глюкозы. Пассивное движение веществ с помощью молекул переносчиков называется облегченной диффузией, как она работает показано на рисунке:


Принцип работы внутреннего белка, транспортирующего глюкозу

Иногда необходимо транспортировать вещество с места с меньшей его концентрацией в места, где его концентрация больше. Этот процесс требует затрат энергии, а потому является активным. Примером может быть калий-натриевый насос (Na+К+ — насос):


Принцип работы калий-натриевого насоса

Он обеспечивает выход из клетки ионов натрия и поступления в нее из внеклеточного пространства ионов калия. Работа этого насоса обеспечивает нормальное функционирования клеток, поддерживая на определенном уровне концентрации ионов Na+ и K+ внутри и снаружи мембраны.

Особым типом активного транспорта является цитоз — перемещение веществ в составе мембранных пузырьков. Процесс вывода веществ из клетки в результате слияния везикул с плазматической мембраной называется экзоцитозом. Таким образом из клеток высвобождаются синтезированные в них ферменты, гормоны, медиаторы и др.

Процесс активного поступления твердых и жидких веществ из внешней среды внутрь клетки называется эндоцитозом. Различают пиноцитоз — поглощение жидкостей и фагоцитоз — поглощение вместе с жидкими веществами твердых частиц. Фагоцитоз играет важную роль в поглощении клетками иммунной системы чужеродных клеток и бактерий, а также в питании одноклеточных организмов.

Схемы процессов экзоцитоза (а) и эндоцитоза (б)

У многоклеточных организмов клетки связаны между собой. Такая связь обеспечивают белки, которые как бы «сшивают» две мембраны, формируя межклеточные контакты.

Рецепторная функция заключается в способности реагировать на химические вещества, изменяя при этом функционирование клеток. Источниками таких биологически активных веществ могут быть как другие клетки (гормоны, нейромедиаторы и т.д.), так и окружающая среда (питательные вещества, яды и т.п.). Первым звеном реагирования на наличие химических веществ является рецепторные белки, встроенные в плазмалемму и способные избирательно связываться с другими веществами.

Некоторые белки, встроенные в клеточную мембрану, играют роль ферментов. В частности, они обеспечивают мембранное (пристеночное) пищеварение в кишечнике человека. В прокариотических клетках мембранные белки участвуют в процессах фотосинтеза, запасании энергии путем синтеза АТФ и др.

Жидкостно-мозаичная модель строения

Многие ученые пытались высказывать предположения о том, каким образом располагаются липиды и белки в мембране. Однако только в 1972 г. учеными Сингером и Николсоном была предложена актуальная и сегодня модель, отражающая строение плазматической мембраны. Она названа жидкостно-мозаичной, и суть ее состоит в следующем: различные типы липидов располагаются в два слоя, ориентируясь гидрофобными концами молекул внутрь, а гидрофильными наружу. При этом вся структура, подобно мозаике, пронизана неодинаковыми типами белковых молекул, а также небольшим количеством гексоз (углеводов).

Вся предполагаемая система находится в постоянной динамике. Белки способны не просто пронизывать билипидный слой насквозь, но и ориентироваться у одной из его сторон, встраиваясь внутрь. Или вообще свободно «гулять» по мембране, меняя местоположение.

Доказательствами в защиту и оправданность этой теории служат данные микроскопического анализа. На черно-белых фотографиях явно видны слои мембраны, верхний и нижний одинаково темные, а средний более светлый. Также проводился ряд опытов, доказывающих, что слои основаны именно липидами и белками.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector