Чем отличается днк от рнк
Содержание:
- Таблица: различия ДНК и РНК
- Что такое нуклеиновые кислоты
- Отличие ДНК от РНК: таблица
- Рибонуклеи́новая кислота
- Строение и функции нуклеиновых кислот АТФ
- Углевод пентоза
- Дезоксирибонуклеиновая кислота (ДНК): строение
- Функции и состав
- Принципы строения ДНК
- Как была открыта структура ДНК
- функция
- Рибонуклеиновая кислота
- Нуклеиновые кислоты и их строение
- Функции нуклеотидов
- Чем ДНК отличается от РНК?
- Нуклеиновая кислота: что это такое?
- Дезоксирибонуклеиновая кислота
- Азотистые основания
- Значение РНК и ДНК
- Выводы и сравнительная таблица
Таблица: различия ДНК и РНК
Признак | Дезоксирибонуклеиновая кислота (ДНК) | Рибонуклеиновая кислота (РНК) |
Нахождение в клетке | Эукариоты – митохондрии, ядро, хлоропласты Прокариоты – внутренняя часть клетки | Эукариоты – цитоплазмы, ядро, рибосомы, митохондрии, хлоропласты |
Нахождение в ядре | Ядро | Ядрышко |
Строение молекулы | Двойной линейный полимер, закрученный спиралью | Одинарная цепь |
Мономер | Дезоксирибонуклеин | Рибонуклеин |
Состав нуклеотидов | Пятиуглеродный сахар (дезоксирибоза), азотистые основания (гуанин, цитозин, аденин, тимин), остаток фосфорной кислоты | Пятиуглеродный сахар (рибоза), азотистые основания (гуанин, цитозин, аденин, урацил), остаток фосфорной кислоты |
Типы нуклеотидов | Аденин (A), гуанин (Г), цитозин (Ц), тимин (Т) | Аденин (A), гуанин (Г), цитозин (Ц), урацил (У) |
Свойства | Есть возможность самоудвоения, стабильность | Нет возможности самоудвоения, лабильность |
Основные функции | Хранение информации, передачу генетической программы от родителей к потомству | Транспортная функция заключается в передаче наследственной информации, информационная функция |
ДНК и РНК имеют схожие черты строения, обе молекулы относятся к нуклеиновым кислотам, но имеют несколько разные функции. РНК в первую очередь занимается транспортировкой информации, которая уже записана в ДНК. Помимо этого, ДНК – это двойная цепь, а РНК одинарная.
Что такое нуклеиновые кислоты
Если вы впервые столкнулись с данными аббревиатурами, то стоит познакомиться с их расшифровкой. ДНК — дезоксирибонуклеиновая кислота. Всем известно, что она охватывает информацию о генах клеток. РНК — рибонуклеиновая кислота. Ее основной функцией является формирование белка. Это органическое вещество, являющееся основой всего живого. Однако это не все различие. РНК от ДНК отличается не только лишь наименованиями и областями использования.
Вещества, о которых идет речь в нашей статье, называют нуклеиновыми кислотами. Больше всего их в ядерном матриксе, там они и были впервые найдены. С течением времени стало очевидным, что размещаются они в разных частях клеток. Пластиды разных видов, митохондрии, а также цитоплазма содержат эти вещества. Но название они получили от латинского слова «нуклеус», что в переводе означает «ядро».
Как и все органические вещества, нуклеиновые кислоты представляют собой природные естественные биополимеры. Это крупные макромолекулы, состоящие из определенного количества циклически повторяющихся одинаковых элементов — мономеров. К примеру, у сложных углеводов это моносахариды.
Отличие ДНК от РНК: таблица
Главные признаки, представляющие отличие молекул ДНК от РНК, представлены в нашей сравнительной таблице.
Признаки сравнения | ДНК | РНК |
Количество цепочек полимера | 2 | 1 |
Вид моносахарида пентозы | Дезоксирибоза | Рибоза |
Разновидности азотистых оснований |
Аденин Гуанин Цитозин Тимин |
Аденин Гуанин Цитозин Урацил |
Место нахождения в клетке | Ядерный аппарат эукариотов, нуклеотид прокариотов, пластиды хлоропласты, митохондрии | Рибосомы, цитоплазма |
Функции | Процесс передачи и сохранности генетической информации | Формирование белковых молекул, реализация генетического материала |
Как видите, отличие ДНК от РНК заключается не только в особенностях структуры, их строение обусловливает различные функции, необходимые всем живым организмам.
Рибонуклеи́новая кислота
РНК имеет ряд отличий от ДНК, однако их строение кардинально не различается. Во-первых, РНК составляют «нормальные» углеводы – рибозы (C5H10O5). Во-вторых, взамен гетероциклического основания тимина в состав РНК входит урацил, лишенный метильной группы.
РНК – одиночная полимерная цепь, которая при благоприятных условиях способна изменять свою конфигурацию и приобретать форму «шпильки», когда ближайшие азотистые основания, комплементарные друг другу, связываются. В РНК следующие основания образуют пары: A-G и U-C. РНК в несколько раз короче спирали ДНК.
Следует упомянуть о типах РНК. Выделяют матричную или информационную РНК (мРНК), транспортную РНК (тРНК), рибосомальную РНК (рРНК), транспортно-матричные РНК (тмРНК) и малые ядерные РНК (мяРНК). Функции их различны, но все они необходимы для жизни. РНК — это основа для биосинтеза белка, поскольку ДНК не присутствует в цитоплазме, где на рибосомах происходит синтез белковых молекул.
Стоит отметить, что процесс синтеза белка начинается с ДНК, где зашифрована информация о конкретном веществе, поскольку ДНК – это источник генной информации. РНК берет свое начало на ДНК, синтезируясь на ней при помощи специального фермента.
Разобрав по отдельности две нуклеиновые кислоты, можно переходить к подведению итогов. Что же объединяет ДНК и РНК и в чем заключается их кардинальное различие?
Строение и функции нуклеиновых кислот АТФ
Это самые длинные из известных макромолекул. Значительно меньше молекулярная масса РНК (от нескольких сотен до десятков тысяч).
ДНК содержатся в основном в ядрах клеток, РНК в рибосомах и протоплазме клеток.
При описании строения нуклеиновых кислот учитывают различные уровни организации макромолекул: первичную и вторичную структуру.
Первичная структура нуклеиновых кислот это нуклеотидный состав и определенная последовательность нуклеотидных звеньев в полимерной цепи.
Например:
…– А – Г – Ц –…
Под вторичной структурой нуклеиновых кислот понимают пространственно упорядоченные формы полинуклеотидных цепей.
Вторичная структура ДНК
Вторичная структура ДНК представляет собой две параллельные неразветвленные полинуклеотидные цепи, закрученные вокруг общей оси в двойную спираль.
Такая пространственная структура удерживается множеством водородных связей, образуемых азотистыми основаниями, направленными внутрь спирали.
Водородные связи возникают между пуриновым основанием одной цепи и пиримидиновым основанием другой цепи. Эти основания составляют комплементарные пары (от лат. complementum — дополнение).
Образование водородных связей между комплементарными парами оснований обусловлено их пространственным соответствием. Пиримидиновое основание комплементарно пуриновому основанию:
Водородные связи между другими парами оснований не позволяют им разместиться в структуре двойной спирали. Таким образом,
- ТИМИН (Т) комплементарен АДЕНИНУ (А),
- ЦИТОЗИН (Ц) комплементарен ГУАНИНУ (Г).
Комплементарность оснований определяет комплементарность цепей в молекулах ДНК.
Способность ДНК не только хранить, но и использовать генетическую информацию определяется следующими ее свойствами:
Вторичная структура РНК
В отличие от ДНК, молекулы РНК состоят из одной полинуклеотидной цепи и не имеют строго определенной пространственной формы (вторичная структура РНК зависит от их биологических функций).
Основная роль РНК непосредственное участие в биосинтезе белка. Известны три вида клеточных РНК, которые отличаются по местоположению в клетке, составу, размерам и свойствам, определяющим их специфическую роль в образовании белковых макромолекул:
- информационные (матричные) РНК передают закодированную в ДНК информацию о структуре белка от ядра клетки к рибосомам, где и осуществляется синтез белка;
- транспортные РНК собирают аминокислоты в цитоплазме клетки и переносят их в рибосому; молекулы РНК этого типа «узнают» по соответствующим участкам цепи информационной РНК, какие аминокислоты должны участвовать в синтезе белка;
- рибосомные РНК обеспечивают синтез белка определенного строения, считывая информацию с информационной (матричной) РНК.
Углевод пентоза
Прежде всего, ДНК от РНК отличается содержанием вида углевода. Простые сахара представляют собой вещества с определенным количеством элемента углерода в общей формуле. Состав нуклеиновых кислот представляют пентозы. Число углерода в них равно пяти. Они и называются поэтому пентозами.
В чем же здесь отличие, если число углерода и молекулярная формула абсолютно одинаковы? Все очень просто: в структурной организации. Такие вещества с одинаковым составом и молекулярной формулой, имеющие отличия в строении и характерных свойствах, в химии именуются изомерами.
Моносахарид рибоза — часть РНК. Этот признак явился определяющим для наименований этих биополимеров. Моносахарид, характерный для ДНК, называется дезоксирибозой.
Дезоксирибонуклеиновая кислота (ДНК): строение
Роль хранителя наследственной информации у всех клеток — животных и растительных — принадлежит ДНК.
Схема строения ДНК изображена на рисунке 74. Молекула ДНК представляет собой две спирально закрученные одна вокруг другой нити.
Ширина такой двойной спирали ДНК невелика, около 2 нм. Длина же ее в десятки тысяч раз больше — она достигает сотен тысяч нанометров.
Между тем самые крупные белковые молекулы в развернутом виде достигают в длину не более 100 — 200 нм.
Таким образом, вдоль молекулы ДНК могут быть уложены одна за другой тысячи белковых молекул.
Молекулярная масса ДНК соответственно исключительно велика — она достигает десятков и даже сотен миллионов.
Обратимся к структуре ДНК. Каждая нить ДНК представляет собой полимер, мономерами которого являются нуклеотиды.
Нуклеотид — это химическое соединение остатков трех веществ: азотистого основания, углевода (моносахарида — дезоксирибозы) и фосфорной кислоты.
ДНК всего органического мира образованы соединением четырех видов нуклеотидов. Их структуры приведены на рисунке рисунке 75.
Как видно, у всех четырех нуклеотидов углевод и фосфорная кислота одинаковы.
Нуклеотиды отличаются только по азотистым основаниям, в соответствии с которыми их называют; нуклеотид с азотистым основанием аденин (сокращенно А), нуклеотид с гуанином (Г), нуклеотид с тимином (Т) и нуклеотид с цитозином (Ц).
По размерам А равен Г, а Т равен Ц; размеры А и Г несколько больше, чем Т и Ц.
Соединение нуклеотидов в нити ДНК происходит через углевод одного нуклеотида и фосфорную кислоту соседнего. Они соединяются прочной ковалентной связью — рисунок 76.
Итак, каждая нить ДНК представляет собой полинуклеотид. Это длинная цепь, в которой в строго определенном порядке расположены нуклеотиды.
Рассмотрим теперь, как располагаются относительно друг друга нити ДНК, когда образуется двойная спираль, и какие силы удерживают их рядом.
Представление об этом дает рисунок рисунок 77, на котором изображен небольшой участок двойной спирали.
Как видно, азотистые основания одной цепи «стыкуются» с азотистыми основаниями другой. Основания подходят друг к другу настолько близко, что между ними возникают водородные связи.
В расположении стыкующихся нуклеотидов имеется важная закономерность, а именно: против А одной цепи всегда оказывается Т на другой цепи, а против Г одной цепи — всегда Ц.
Оказывается, что только при таком сочетании нуклеотидов обеспечивается, во-первых, одинаковое по всей длине двойной спирали расстояние между цепями и, во-вторых, образование между противолежащими основаниями максимального числа водородных связей (три водородные связи между Г и Ц и две водородные связи между А и Т).
В каждом из этих сочетаний оба нуклеотида как бы дополняют друг друга. Слово «дополнение» на латинском языке «комплемент». Принято поэтому говорить, что Г является комплементарным Ц, а Т комплементарен А.
Если на каком-нибудь участке одной цепи ДНК один за другим следуют нуклеотиды А, Г, Ц, Т, А, Ц, Ц, то на противолежащем участке другой цепи окажутся комплементарные им Т, Ц, Г, А, Т, Г, Г.
Таким образом, если известен порядок следования нуклеотидов в одной цепи, то по принципу комплементарности сразу же выясняется порядок нуклеотидов в другой цепи.
Большое число водородных связей обеспечивает прочное соединение нитей ДНК, что придает молекуле устойчивость и в то же время сохраняет ее подвижность: под влиянием фермента дезоксирибонуклеазы она легко раскручивается.
ДНК содержится в ядре клетки, а также в митохондриях и хлоропластах.
В ядре ДНК входит в состав хромосом, где она находится в соединении с белками.
Функции и состав
Молекула ДНК представляет собой полимер, который состоит из нескольких тысяч пар нуклеотидных мономеров. Объединение нескольких нуклеотидов вместе приводит к образованию полинуклеотидной цепи. Мономерными единицами кислоты являются нуклеотиды, а полимер известен как «полинуклеотид». Каждый нуклеотид состоит из 5-углеродного сахара (дезоксирибоза), азотсодержащего основания, присоединённого к сахару, и фосфатной группы.
Нуклеотиды также известны как азотистые основания ДНК. Азотистые основания бывают двух типов, а именно: пиримидины и пурины.
Пиримидины — это структуры с одним кольцом, Бывают нескольких типов, а именно цитозин и тимин. Они занимают меньше места в структуре кислоты. Пиримидин связан с дезоксирибозным сахаром в положении 3.
Пурины представляют собой соединения с двойным кольцом. Бывают двух типов, а именно аденин и гуанин. Занимают больше места в структуре кислоты. Дезоксирибозный сахар связан в положении 9 пурина.
Таким образом, в ДНК существует четыре различных типа азотистых оснований, а именно: аденин (A), гуанин (G), цитозин и тимин (T). В РНК тимин пиримидинового основания заменяется урацилом.
Пуриновые и пиримидиновые основания всегда сопряжены определённым образом. Аденин всегда будет сочетаться с тимином, а гуанин с цитозином. Аденин и тимин соединены двойными водородными связями, а гуанин и цитозин — тройными водородными связями. Однако эти связи являются слабыми, что помогает в разделении цепей во время репликации.
Дезоксирибоза сахара — пентозный сахар с пятью атомами углерода. Четыре атома углерода находятся внутри кольца, а пятый — с группой CH2. У последнего есть три группы ОН в 1, 3 и 5 углеродных положениях. Атомы водорода связаны с атомами углерода от одного до четырёх. В РНК сахарная рибоза похожа на дезоксирибозу за исключением того, что она имеет группу ОН на атоме углерода 2 вместо группы Н.
Молекула фосфата расположена альтернативно молекуле дезоксирибозы. Таким образом, с обеих сторон фосфата находится дезоксирибоза. Фосфат соединён с атомом углерода 3 дезоксирибозы с одной стороны и с атомом углерода 5 дезоксирибозы с другой стороны.
Нуклеозиды отличаются от нуклеотидов тем, что в них отсутствуют фосфатные группы. Четырьмя различными нуклеозидами ДНК являются дезоксиаденозин (дА), дезоксигуанозин (дГ), дезоксицитозин (дК) и дезокситимидин (дТ).
Принципы строения ДНК
Еще одна важная особенность — наличие четырех уровней организации (вы сможете это увидеть на картинке). Как уже стало понятно, первичная структура — это цепочка нуклеотидов, при этом соотношение азотистых оснований подчиняется некоторым законам.
Вторичная структура — двойная спираль, состав каждой цепи которой специфичен для вида. Остатки фосфорной кислоты мы можем обнаружить снаружи спирали, а азотистые основания располагаются внутри.
Далее идет суперспирализованная структура. Помимо сплетения двух цепей, они наматываются на гистоны (для большей компактности). Гистоны — это специальные белки, которые делятся на пять классов.
Последним уровнем выступает хромосома. Представьте, что Эйфелева башня помещается в спичечный коробок, вот так уложена молекула ДНК в хромосоме
Важно заметить еще и то, что хромосома может состоять из одной хроматиды или двух
Поговорим, прежде чем составить таблицу сравнения ДНК и РНК, о структуре РНК.
Как была открыта структура ДНК
Над открытием структуры ДНК в середине ХХ века бились многие ученые. Но только трое из них: Джеймс Уотсон, Фрэнсис Крик и Морис Уилкинс в 1962 году были удостоены Нобелевской премии по физиологии и медицине.
Начало истории
Джеймс Уотсон родился в 1928 году. В момент открытия структуры ДНК ему было всего 25 лет. В 1947-1951 годах Джеймс Уотсон учился в магистратуре и аспирантуре Индианского университета. Под руководством итальянского ученого-рентгенолога Сальвадора Лурии он написал диссертацию о воздействии рентгеновских лучей на размножение бактериофагов. В 1950 году Джеймс Уотсон получил докторскую степень. Изучая строение бактериофагов, Джеймс Уотсон, используя генетические методы, пытался определить структуру ДНК. Однако после доклада физика из Лондонского королевского колледжа Мориса Уилкинса, он понял, что для открытия структуры ДНК нужно использовать метод рентгеноструктурного анализа.
С целью изучения этого метода Джеймс Уотсон в 1951 году поступил в Кавендишскую лабораторию Кембриджского университета, где начал изучать структуру белков. Там он познакомился с физиком Фрэнсисом Криком, который интересовался биологией и был силен в теории кристаллографии.
Основные события
Параллельно работам в Кавендишской лаборатории Кембриджского университета над расшифровкой структуры ДНК работали сотрудники Лондонского королевского колледжа Морис Уилкинс и Розалинда Франклин. Розалинда Франклин ( рис.1) прекрасно владела методом рентгеноструктурного анализа и ее рентгенограммы ДНК отличались высоким качеством и четкостью.
Рис.1. Розалинда Франклин
Пытался разгадать структуру ДНК и нобелевский лауреат химик Лайнус Полинг. Однако его модели предполагали, что ДНК состоит из трех цепей.
В декабре 1952 года Морис Уилкинс без согласия Розалинды Франклин продемонстрировал Джеймсу Уотсону рентгенограмму №51, которая отличалась высокой четкостью. По одним данным ее выполнила Розалинда Франклин, по другим – Раймонд Гослинг. Эта рентгенограмма помогла Джеймсу Уотсону и Фрэнсису Крику построить модель структуры ДНК (рис.2).
Рис.1. Фрэнсис Крик (слева) и Джеймс Уотсон возле модели ДНК
«Мой рот открылся, и мой пульс начал биться» – написал Уотсон в своей знаменитой книге «Двойная спираль». Это была единственная информация, которая была нужна ему и Френсису Крику, чтобы составить точную модель структуры ДНК. Рентгенограмма 51 была доказательством того, что спиральная структура ДНК имела две нити, прикрепленные в середине фосфатными основаниями. В апрельском номере журнала Nature за 1953 год они опубликовали краткую статью, в которой описывали структуру ДНК и даже поместили набросок ее структуры. В том же номере журнала также была опубликована статья Мориса Уилкинса и Розалинды Франклин. Но, как отмечают последующие исследователи этой почти детективной истории, статья Джеймса Уотсона и Фрэнсиса Крика была краткой и четкой. Статья Розалинды Франклин и Мориса Уилкинса была менее строгой и понятной.
Конец истории
В 1958 году Розалинда Франклин умерла. У нее был диагносцирован рак. Возможно, сказалось длительное рентгеновское облучение при работе над рентгенограммами ДНК, возможно – огорчение, что другие воспользовались ее трудами без ее ведома.
В 1962 году за открытие структуры ДНК Джеймс Уотсон, Фрэнсис Крик и Морис Уилкинс были удостоены Нобелевской премии по физиологии и медицине.
функция
ДНК предоставляет живым организмам руководящие принципы — генетическую информацию в хромосомной ДНК — которая помогает определить природу биологии организма, как он будет выглядеть и функционировать, основываясь на информации, передаваемой от предыдущих поколений в процессе размножения. Медленные, устойчивые изменения, обнаруживаемые в ДНК с течением времени, известные как мутации, которые могут быть разрушительными, нейтральными или полезными для организма, лежат в основе теории эволюции.
Гены находятся в небольших сегментах длинных цепей ДНК; у людей около 19 000 генов. Подробные инструкции, содержащиеся в генах, определяемые тем, как упорядочены нуклеиновые основания в ДНК, несут ответственность как за большие, так и за маленькие различия между разными живыми организмами и даже среди похожих живых организмов. Генетическая информация в ДНК — это то, что заставляет растения выглядеть как растения, собаки — как собаки, а люди — как люди; это также то, что мешает разным видам производить потомство (их ДНК не будет соответствовать новой здоровой жизни). Генетическая ДНК — это то, что заставляет некоторых людей иметь кудрявые, черные волосы, а других — прямые, светлые волосы, и что делает одинаковых близнецов похожими. ( См. Также Генотип против Фенотипа .)
РНК выполняет несколько различных функций, которые, хотя и связаны между собой, немного различаются в зависимости от типа. Существует три основных типа РНК:
- РНК-мессенджер (мРНК) транскрибирует генетическую информацию из ДНК, найденной в ядре клетки, и затем передает эту информацию в цитоплазму и рибосому клетки.
- Трансферная РНК (тРНК) находится в цитоплазме клетки и тесно связана с мРНК в качестве ее помощника. тРНК буквально переносит аминокислоты, основные компоненты белков, в мРНК в рибосоме.
- Рибосомная РНК (рРНК) обнаружена в цитоплазме клетки. В рибосоме он берет мРНК и тРНК и транслирует информацию, которую они предоставляют. Из этой информации он «узнает», должен ли он создавать или синтезировать полипептид или белок.
Гены ДНК экспрессируются или проявляются через белки, которые ее нуклеотиды продуцируют с помощью РНК. Признаки (фенотипы) происходят из того, какие белки сделаны и которые включены или выключены. Информация, найденная в ДНК, определяет, какие признаки должны быть созданы, активированы или деактивированы, в то время как различные формы РНК выполняют свою работу.
Одна гипотеза предполагает, что РНК существовала до ДНК и что ДНК была мутацией РНК. Видео ниже обсуждает эту гипотезу более подробно.
Рибонуклеиновая кислота
Рибонуклеиновая кислота (РНК) является одной из макромолекул, которая содержится в клетках каждого живого организма. РНК представляет собой цепь, каждое из звеньев которой называется нуклеотидом. Последовательность звеньев (нуклеотидов) кодирует генетическую информацию.
Транскрипция – это перенос информации из ДНК в РНК, который осуществляется посредством ферментов. Разные типы рибонуклеиновой кислоты обрабатываются разными ферментами. После завершения этого процесса, происходит модификация, которая подразумевает подготовку к следующему действию.
После происходит процесс названный трансляцией, цель которого – синтез белка с участием рибосом. Часть вирусов обладают геномами, состоящими из РНК – это говорит о том, что у них рибонуклеиновая кислота играет роль ДНК.
В 1868г. была открыта молекула РНК, а в 1939г. были определены ее основные функции.
Звенья РНК состоят из сахара и рибозы, но помимо этого, насчитывается еще около 100 модифицированных нуклеотидов, большинство из которых – модификации сахара. Значение и функции большей части соединений не известны, но ясно, что они располагаются в важных участках.
В составе РНК существуют азотистые основания, которые порой образовывают водородные связи или складываются в петлю. Различия между ДНК и РНК в структуре существуют – благодаря гидроксильной группе, молекула рибонуклеиновой кислоты существует в А-конформации.
Учеными-биологами выделяется три основных типа РНК:
- Рибосомные РНК составляют большую часть, их главная цель – формирование центра рибосомы, где в дальнейшем происходит синтез белка;
- Транспортные РНК присоединяют к себе аминокислоту и «довозят» ее до нужного места;
- Информационные РНК передают информацию о белке рибосомам, где эти сведения будут реализованы.
Сходства между ДНК и РНК заключается в том, что обе молекулы могут хранить в себе информацию о процессах. РНК зачастую использует вместо генома вирусоподобные частицы и сами вирусы.
Таким образом, рибонуклеиновая кислота одновременно является носителем важной информации и катализатором реакций. Данные сведения подтолкнули ученых на мысль о том, что РНК самый первый сложный полимер, который появился в процессе эволюции
Данная гипотеза получила название – «РНК-мира».
Нуклеиновые кислоты и их строение
Прежде всего необходимо узнать, что нуклеотидами являются мономеры нуклеиновых кислот. Они соединены между собой линейно, формируя длинные молекулярные соединения нуклеиновых кислот. Самыми длинными полимерами являются цепочки молекул ДНК. Как правило, длина молекул РНК значительно меньше, но при этом может отличаться (зависит от типа).
При формировании полинуклеотидного соединения остатки фосфорной кислоты взаимодействуют с трехатомным углеродом пентозы. Аналогичная связь формируется между фосфорной кислотой и пятиатомным углеродом сахара непосредственно в нуклеиновой кислоте.
Исходя из этого, индивидуальная характеристика нуклеиновой кислоты — это последовательность пентозы с мостиками фосфорных кислот. Азотистые основания отделяются по сторонам.
Стоит добавить, что молекулы ДНК не только длиннее в сравнении с РНК, но и состоят из нескольких цепей, которые соединены между собой химически водородными связями. Такие структурные связи формируются по принципу комплементарности: гуанин комплементарен цитозину, а аденин — тимину.
Нуклеотиды содержат в себе такие вещества:
Нуклеотиды | Остаток фосфорной кислоты | Соединения азота | Пятиуглеродный сахар |
РНК | + |
|
Рибоза |
ДНК | + |
|
Дезоксирибоза |
Функции нуклеотидов
Местонахождение в клетках аминокислот, белка и нуклеотидов поддерживает их жизнедеятельность, а также сохранение, передачу и верную реализацию генетической наследственности. Стоит в отдельности рассмотреть функции ДНК, РНК и их разновидностей в жизни живых организмов.
Значение ДНК
В клетках ДНК вся информация в основном сосредоточена в ядре клетки. Бактериальная среда, как правило, в формуле занимает одну кольцевую молекулу, находится в неправильной формы образовании в цитоплазме, именуемым нуклеотидом. Гены, входящие в состав наследственной информации генома, являются единицей передачи генетической наследственности. Признак частицы — открытая рама считывания.
- Самая важная биологическая функция вида — генетическая, клетка является носителем генетической информации (благодаря этой особенности, каждый вид на планете обладает своими индивидуальными особенностями).
- Наследственную информацию ДНК способно передавать в ряду целых поколений не без дополнительного участия и РНК.
- Осуществляет процессы регуляции биосинтеза белка.
Свойства РНК
В природе различают три разновидности РНК, каждая из которых предназначена для выполнения особой роли в осуществлении синтеза белка.
- Транспортная предназначена для транспортировки активированных аминокислот по организму к рибосомам. Это необходимо для осуществления синтеза полипептидных молекул. Исследования показали, что одна транспортная молекула способна связаться лишь с одной из 20 аминокислот. Они служат в качестве транспортировщиков специфических аминокислот и углеводов. Длина транспортной цепи значительно короче матричной, в состав входит приблизительно 80 нуклеотидов, визуально имеет вид клеверного листа.
- Матричная занимается копированием наследственного кода из ядра в цитоплазму. За счет этого процесса осуществляется синтез разнообразных белков. Схема строения представляет собой одноцепочную молекулу, она является неотъемлемой составляющей цитоплазмы. В составе молекулы содержится до нескольких тысяч нуклеотидов, они занимаются транспортировкой наследственной информации через мембрану ядра к очагу синтеза на рибосоме. Копирование информации осуществляется посредством транскрипции.
- Рибосомная задействует около 73 белков для формирования рибосом. Они собой представляют клеточные органеллы, на которых осуществляется сбор полипептидных молекул. Основные задачи рибосомной молекулы — это формирование центра рибосомы (активного); неотъемлемый структурный элемент рибосом, обеспечивающий их правильное функционирование; первоначальное взаимодействие рибосомы с кодоном-инициатором для выявления рамки считывания; обеспечение взаимодействия рибосомных молекул с транспортными.
Чем ДНК отличается от РНК?
По своему химическому составу кислоты очень схожи друг с другом. Обе относятся к линейным полимерам и являют собой N-гликозид, созданный из остатков пятеуглеродного сахара.
Но разница в том, что сахарный остаток РНК – это рибоза, моносахарид из группы пентоз, легко растворяющийся в воде. Сахарный остаток ДНК – это дезоксирибоза, или производная рибозы, имеющая несколько иную структуру.
Но в отличие от рибозы, формирующей кольцо из 4 атомов углерода и 1 атома кислорода, в дезоксирибозе второй атом углерода замещается водородом.
Еще одно отличие между ДНК и РНК заключается в их размерах – первая молекула более крупная. Кроме этого, среди четырех нуклеотидов, входящих в ДНК, один представляет собой азотистое основание под названием тимин. Но в РНК вместо тимина присутствует его разновидность – урацил.
Нуклеиновая кислота: что это такое?
Для того чтобы составить таблицу сравнения ДНК и РНК, необходимо более подробно познакомиться с данными полинуклеотидами. Начнем с общего вопроса. И ДНК, и РНК — это нуклеиновые кислоты. Как говорилось ранее, они образуются из остатков нуклеотидов.
Эти полимеры можно обнаружить абсолютно в любой клеточке организма, так как именно на их плечи возложена большая обязанность, а именно:
- хранение;
- передача;
- реализация наследственности.
Теперь очень коротко осветим основные их химические свойства:
- хорошо растворяются в воде;
- практически не поддаются растворению в органических растворителях;
- чувствительны к изменениям температуры;
- если молекулу ДНК выделить каким-либо возможным образом из природного источника, то можно наблюдать фрагментацию при механических действиях;
- фрагментирование происходит ферментами под названием нуклеазы.
Дезоксирибонуклеиновая кислота
ДНК это биополимер. В основе мономера ДНК – пентоза. Углевод ДНК является исключением из правил, ведь его формула (C5H10O4) отличается от «нормального» углевода тем, что в ней отсутствует один атом кислорода, поэтому этот углевод получил название «дезоксирибоза».
К остатку дезоксиробозы присоединено одно азотистое основание (цитозин, тимин, аденин и гуанин). Полимерная цепь ДНК образуется путем связывания между собой мономеров. Сшиваются между собой соседние «звенья» остатками фосфорной кислоты, образуя фосфодиэфирную 3’-5’ – связь.
ДНК – это двойная антипараллельная правозакрученная спираль. Две цепи соединены водородными связями, которые возникающими между гетероциклическими соединениями. В ДНК комплементарные пары: A-G и C-T.
Уникальность ДНК в том, что она способна создавать дочернюю молекулу (репликация). Для этого спираль ДНК расходится на две материнские цепи и с помощью ферментов (основной фермент это ДНК-полимераза) на них выстраиваются дочерние цепи, основываясь на правиле комплементарности. В итоге образуется две идентичные друг другу цепи ДНК. Этот процесс обеспечивает безошибочную передачу наследственной информации из поколения в поколение.
Азотистые основания
Рассмотрим еще одно различие молекул ДНК и РНК. Оно также влияет на свойства данных веществ. В структуру мономеров ДНК входит один из четырех остатков азотистых оснований: аденин, гуанин, цитозин, тимин. Размещаются они согласно определенному правилу.
В молекуле ДНК, которая состоит из двух спирально закрученных цепей, напротив аденилового основания всегда находится тимидиловый, а гуаниловому соответствует цитидиловый. Это правило называется принципом комплементарности. Между аденином и гуанином всегда образуются две, а между гуанином и цитозином — три водородные связи.
Совсем по-другому обстоит дело с рибонуклеиновой кислотой. Вместо тимина в ее состав входит другое азотистое основание. Оно называется урацил. Стоит сказать, что, по сравнению с ДНК, РНК существенно меньших размеров, поскольку состоит из одной спиральной молекулы.
Значение РНК и ДНК
Когда было открыто, что такое ДНК, ее роль не была такой очевидной. Даже сегодня, несмотря на то, что раскрыто намного больше информации, остаются без ответов некоторые вопросы. А какие-то, возможно, еще даже не сформулированы.
Общеизвестное биологическое значение ДНК и РНК заключаются в том, что ДНК передает наследственную информацию, а РНК участвует в синтезе белка и кодирует белковую структуру.
Однако существуют версии, что эта молекула связана с нашей духовной жизнью. Что такое ДНК человека в этом смысле? Она содержит всю информацию о нем, его жизнедеятельности и наследственности. Метафизики считают, что опыт прошлых жизней, восстановительные функции ДНК и даже энергия Высшего «Я» — Творца, Бога содержится в ней.
По их мнению, цепочки содержат коды, касающиеся всех аспектов жизни, включая и духовную часть. Но некоторая информация, например, о восстановлении своего тела, расположена в структуре кристалла многомерного пространства, находящегося вокруг ДНК. Она представляет собой двенадцатигранник и является памятью всей жизненной силы.
Ввиду того, что человек не обременяет себя духовными знаниями, обмен информации в ДНК с кристаллической оболочкой происходит очень медленно. У среднестатистического человека он составляет всего пятнадцать процентов.
Предполагается, что это было сделано специально для сокращения жизни человека и падения на уровень дуальности. Таким образом, у человека растет кармический долг, а на планете поддерживается необходимый для некоторых сущностей уровень вибрации.
Выводы и сравнительная таблица
Нередко школьникам дают задание по биологии или химии — сравнить ДНК и РНК. Таблица в этом случае будет необходимым помощником. Все, что было сказано ранее в статье, вы сможете увидеть здесь в сжатой форме.
Признак | ДНК | РНК |
Структура | Две цепи. | Одна цепь. |
Полинуклеотидная цепь | Цепи правозакручены относительно друг друга. | Может иметь различные формы, все зависит от типа. Для примера возьмем тРНК, имеющую форму кленового листа. |
Локализация | В 99% локализация в ядре, однако можно встретить в хлоропластах и митохондриях. | Ядрышки, рибосомы, хлоропласты, митохондрии, цитоплазма. |
Мономер | Дезоксирибонуклеотиды. | Рибонуклеотиды. |
Нуклеотиды | А, Т, Г, Ц. | А, Г, Ц, У. |
Функции | Хранение наследственной информации. | МРНК переносит наследственную информацию, рРНК выполняет структурную функцию, мРНК, тРНК и рРНК участвуют в синтезе белка. |
Несмотря на то что наша сравнительная характеристика получилась очень краткой, мы смогли охватить все аспекты строения и функций рассматриваемых соединений. Эта таблица сможет послужить хорошей шпаргалкой на экзамене или просто памяткой.