Генетический код

Описание

Катехол-О-метилтрансфераза (COMT Val158Met) — выявление мутации G472A (Val158Met).Ген COMT 
Ген COMT кодирует белок — цитозольный фермент, катализирующий присоединение метильной группы к различным катехоламинам (адреналин, норадреналин, дофамин). Он ускоряет присоединение метильной группы к различным катехоламинам (адреналин, норадреналин, допамин). В результате этой реакции в зависимости от использованного субстрата образуется гомованилиновая кислота, норметанефрин и метанефрин.
Катехол-О-метилтрансфераза регулирует передачу нервного импульса, влияет на особенности эмоциональных реакций, участвует в метаболизме эстрогенов. Разрушает поступившие в синаптическую щель катехоламины (дофамин, адреналин, норадреналин) — молекулы, которые передают сигнал от одного нейрона к другому. Они действуют через два главных класса рецепторов — альфа-адренергические и бета-адренергические, — располагающихся на поверхности клеток эндокринных желез, гипоталамуса и гипофиза. При физической нагрузке, сильном стрессе и других воздействиях на организм катехоламины выделяются в кровь. Это приспособительная реакция, в результате которой организм отвечает на воздействие извне. Например, если человек испытывает сильный страх, начинает интенсивно синтезироваться адреналин, который помогает организму повысить выносливость и мобилизовать силы. Синтезируется в мозге, печени, лёгких и других тканях.Генетический маркёр G472A (Val158Met)
Участок ДНК в составе гена СОМТ, в котором происходит замена гуанина (G) нааденин (А) в позиции 472, называется генетическим маркёром G472A. Если в данной позиции находится гуанин (G), такой вариант гена обозначается как G-аллель, а если аденин (А) — A-аллель.
Катехоламины быстро метаболизируются под действием ферментов катехол-О-метилтрансферазы (КОМТ) и моноаминоксидазы. Лишь небольшая часть адреналина выводится из организма с мочой — менее 5 %.
Активность фермента CОМТ может различаться у людей из-за генетического полиморфизма, кодирующего его ген COMT. Участок ДНК в составе гена СОМТ, в котором происходит замена гуанина (G) на аденин (А) в позиции 472, называется генетическим маркёром G472A. Если в данной позиции находится гуанин (G), такой вариант гена обозначается как G-аллель, а если аденин (А) — A-аллель.
В результате данной замены, в позиции 158 аминокислотной последовательности белка, аминокислота валин замещается на метионин (Val158Met), что приводит к повышению уровня катехоламинов и может способствовать психоневрологическим проявлениям заболеваний.
У гомозигот по аллелю А (генотип А/А) наблюдается 3- и 4-кратное снижение ферментативной активности, по сравнению с гомозиготами по аллелю G (генотип G/G).
Пациенты с велокардиофациальным синдромом (врождённая генетическая аномалия, ассоциированная с микроделецией 22q11, для синдрома характерны пороки сердца, расщелины нёба, черепно-лицевые дисморфии, задержка развития, также поведенческие расстройства и др. симптомы) с генотипом А/А чаще страдают такими психическими нарушениями, как шизофрения и биполярное расстройство.
Полиморфизм гена COMT может влиять на развитие алкоголизма. Этанолиндуцированная эйфория связана с быстрым высвобождением допамина. У унаследовавших аллель А людей уровень инактивации допамина относительно снижен, и они более подвержены развитию алкогольной зависимости (аллель А кодирует СОМТ со сниженной функцией).
У пациентов с паническими расстройствами достоверно увеличена частота встречаемости аллеля А, по сравнению со здоровыми людьми. Также полиморфизм гена СОМТ может влиять на эффективность ряда препаратов.
Клинические эффекты амфетамина довольно изменчивы, от положительного влияния на настроение и сознание у одних лиц, до отрицательной реакции у других. При лечении амфетамином, пациенты с генотипом А/А оказались в группе риска неблагоприятного ответа на терапию. Подготовка
Генетическое обследование не требует специальной подготовки. Рекомендуется взятие крови не ранее чем через 4 часа после последнего приёма пищи.
Перед диагностикой не рекомендуется подвергать себя стрессовым ситуациям, принимать спиртные напитки и курить.
Рацион и приём лекарственных препаратов не влияет на результат исследования.Интерпретация результатов
Для интерпретации результатов генетического тестирования требуется консультация врача-генетика.

«Гены. Генетический код»

Раздел ЕГЭ: 2.6. Генетическая информация в клетке. Гены, генетический код и его свойства. Матричный характер реакций биосинтеза. Биосинтез белка и нуклеиновых кислот

На Земле живет уже более 6 млрд людей. Если не считать 25-30 млн пар однояйцевых близнецов, то генетически все люди разные. Это означает, что каждый из них уникален, обладает неповторимыми наследственными особенностями, свойствами характера, способностями, темпераментом и многими другими качествами. Чем же определяются такие различия между людьми? Конечно различиями в их генотипах, т.е. наборах генов данного организма. У каждого человека он уникален, так же как уникален генотип отдельного животного или растения. Но генетические признаки данного человека воплощаются в белках, синтезированных в его организме. Следовательно, и строение белка одного человека отличается, хотя и совсем немного, от белка другого человека. Вот почему возникает проблема пересадки органов, вот почему возникают аллергические реакции на продукты, укусы насекомых, пыльцу растений и т.д. Сказанное не означает, что у людей не встречается совершенно одинаковых белков. Белки, выполняющие одни и те же функции, могут быть одинаковыми или совсем незначительно отличаться одной-двумя аминокислотами друг от друга. Но не существует на Земле людей (за исключением однояйцевых близнецов), у которых все белки были бы одинаковы.

Информация о первичной структуре белка закодирована в виде последовательности нуклеотидов в участке молекулы ДНК — гене. Ген — это единица наследственной информации организма. Каждая молекула ДНК содержит множество генов. Совокупность всех генов организма составляет его генотип.

Кодирование наследственной информации происходит с помощью генетического кода. Код подобен всем известной азбуке Морзе, которая точками и тире кодирует информацию. Азбука Морзе универсальна для всех радистов, и различия состоят только в переводе сигналов на разные языки. Генетический код также универсален для всех организмов и отличается лишь чередованием нуклеотидов, образующих гены и кодирующих белки конкретных организмов.

Свойства генетического кода: триплетность, специфичность, универсальность, избыточность и неперекрываемость.

Итак, что же собой представляет генетический код? Изначально он состоит из троек (триплетов) нуклеотидов ДНК, комбинирующихся в разной последовательности. Например, ААТ, ГЦА, АЦГ, ТГЦ и т.д. Каждый триплет нуклеотидов кодирует определенную аминокислоту, которая будет встроена в полипептидную цепь. Так, например, триплет ЦГТ кодирует аминокислоту аланин, а триплет ААГ — аминокислоту фенилаланин. Аминокислот 20, а возможностей для комбинаций четырех нуклеотидов в группы по три — 64. Следовательно, четырех нуклеотидов вполне достаточно, чтобы кодировать 20 аминокислот. Вот почему одна аминокислота может кодироваться несколькими триплетами. Часть триплетов вовсе не кодирует аминокислоты, а запускает или останавливает биосинтез белка.

Собственно генетическим кодом считается последовательность нуклеотидов в молекуле иРНК, ибо она снимает информацию с ДНК (процесс транскрипции) и переводит ее в последовательность аминокислот в молекулах синтезируемых белков (процесс трансляции). В состав иРНК входят нуклеотиды АЦГУ. Триплеты нуклеотидов иРНК называются кодонами. Уже приведенные примеры триплетов ДНК на иРНК будут выглядеть следующим образом — триплет ЦГТ на иРНК станет триплетом ГЦА, а триплет ДНК — ААГ — станет триплетом УУЦ. Именно кодонами иРНК отражается генетический код в записи. Итак, генетический код триплетен, универсален для всех организмов на земле, вырожден (каждая аминокислота шифруется более чем одним кодоном). Между генами имеются знаки препинания — это триплеты, которые называются стоп-кодонами. Они сигнализируют об окончании синтеза одной полипептидной цепи. Существуют таблицы генетического кода, которыми нужно уметь пользоваться, для расшифровки кодонов иРНК и построения цепочек белковых молекул (в скобках — комплементарные ДНК).

  • Матричный характер реакций биосинтеза. Биосинтез белка и нуклеиновых кислот.
  • Вернуться в Кодификатор ЕГЭ.

Свойства генетического кода

Свойства генетического кода во многом являются следствием способа кодирования аминокислот.

Первое и очевидное свойство — это триплетность. Под ним понимают тот факт, что единицей кода является последовательность из трех нуклеотидов.

Важным свойством генетического кода является его неперекрываемость. Нуклеотид, входящий в один триплет, не может входить в другой. То есть последовательность AGUGAA можно прочитать только как AGU-GAA, но нельзя, например, так: AGU-GUG-GAA. Т. е. если пара GU входит в один триплет, она не может уже быть составной частью другого.

Под однозначностью генетического кода понимают то, что каждому триплету соответствует только одна аминокислота. Например, триплет AGU кодирует аминокислоту серин и больше никакую другую. Данному триплету однозначно соответствует только одна аминокислота.

С другой стороны, одной аминокислоте может соответствовать несколько триплетов. Например, тому же серину, кроме AGU, соответствует кодон AGC. Данное свойство называется вырожденностью генетического кода. Вырожденность позволяет оставлять многие мутации безвредными, так как часто замена одного нуклеотида в ДНК не приводит к изменению значения триплета. Если внимательно посмотреть на таблицу соответствия аминокислот триплетам, то можно увидеть, что, если аминокислота кодируется несколькими триплетами, то они зачастую различаются последним нуклеотидом, т. е. он может быть любым.

Также отмечают некоторые другие свойства генетического кода (непрерывность, помехоустойчивость, универсальность и др.).

Что такое генетический код

Способ кодирования последовательности белков аминокислот благодаря последовательности нуклеотидов характерен для всех живых клеток и организмов. Вот что такое генетический код. В ДНК есть четыре нуклеотида:

  • аденин — А;
  • гуанин — Г;
  • цитозин — Ц;
  • тимин — Т.

Они обозначаются заглавными буквами латинскими или (в русскоязычной литературе) русскими. В РНК также присутствуют четыре нуклеотида, однако один из них отличается от ДНК:

  • аденин — А;
  • гуанин — Г;
  • цитозин — Ц;
  • урацил — У.

Все нуклеотиды выстраиваются в цепочки, причем в ДНК получается двойная спираль, а в РНК — одинарная.Белки строятся на двадцати аминокислотах, где они, расположенные в определенной последовательности, определяют его биологические свойства.

Редактирование обязательно делать в самом организме?

Нет. Во время одного из самых первых испытаний редактора генома учёные забирали клетки из крови пациента, выполняли необходимые генетические корректировки и вводили исправленные клетки обратно. Такой метод выглядит многообещающим для лечения для людей, живущих с ВИЧ. Когда вирус попадает в организм, он инфицирует и убивает иммунные клетки. Но чтобы инфицировать иммунную клетку, ВИЧ сначала должен прицепиться к определённым белкам на её поверхности. Учёные выделили иммунные клетки из крови пациента и использовали редактор генома, чтобы вырезать ту ДНК, которая нужна клеткам для образования этих поверхностных белков. Без них ВИЧ не может получить доступ к клеткам.

Подобный способ может использоваться для борьбы с некоторыми типами рака: иммунные клетки выделяются из крови пациента и редактируются так, что они больше не могут синтезировать поверхностные белки, к которым цепляются раковые клетки. Отредактировав иммунные клетки и сделав из них «убийц рака», учёные размножают их и вводят обратно в организм пациента. Прелесть модифицирования клеток вне организма в том, что всё можно перепроверить до того, как вводить обратно, чтобы убедиться, что процесс редактирования проведён верно.

Что такое геном?

У большинства организмов в каждой клетке множество генов. Они работают не каждый сам по себе, а взаимодействуя друг с другом. Скажем, у львиного зева есть один ген, который определяет белую окраску лепестков, а другой – их красный цвет. Если оба эти гена оказались у одного растения, его цветы будут розовыми.

Гены могут подавлять или усиливать действие друг друга. Так, есть группа генов, которая определяет насыщенность кожи людей пигментом меланином. Чем больше у конкретного человека таких генов, тем темнее у него кожа. В общем, есть смысл говорить о геноме – совокупности генов одного организма (часто вместо этого используют термин «генотип»). Размеры генома очень различаются. Есть вирусы, у которых всего 2–3 гена; у человека же 20–25 тысяч пар активных генов.

История


Генетический код

Попытки понять, как кодируются белки, начались после того , как в 1953 году была открыта структура ДНК . Джордж Гамов постулировал, что для кодирования 20 стандартных аминокислот, используемых живыми клетками для создания белков, необходимо использовать наборы из трех оснований, что позволило бы получить максимум 4 3 = 64 аминокислоты.

Кодоны

Крика, Бреннер, Барнетта и Уоттс-Тобин эксперимент впервые продемонстрировали , что кодоны состоят из трех оснований ДНК. Маршалл Ниренберг и Генрих Дж. Маттай были первыми, кто раскрыл природу кодона в 1961 году.

Они использовали бесклеточной системы для перевода с поли урацил РНК — последовательности (т.е. UUUUU …) и обнаружил , что полипептид , который они синтезировали состоял только из аминокислоты фенилаланина . Таким образом, они пришли к выводу, что кодон UUU определяет аминокислоту фенилаланин.

За этим последовало экспериментов в Северо Очоа лаборатории о том , что показано , что поли — аденин — последовательность РНК (ААААА …) кодируется для полипептида поли- лизина и что поли цитозин последовательности РНК (ККККК …) кодируется для полипептид поли- пролина . Следовательно, кодон AAA определяет аминокислоту лизин , а кодон CCC определяет аминокислоту пролин . Затем с использованием различных сополимеров было определено большинство оставшихся кодонов.

Последующая работа Хар Гобинд Хорана определила остальную часть генетического кода. Вскоре после этого Роберт У. Холли определил структуру транспортной РНК (тРНК), адапторной молекулы, которая облегчает процесс трансляции РНК в белок. Эта работа была основана на более ранних исследованиях Очоа, которые принесли последнему Нобелевскую премию по физиологии и медицине в 1959 году за работу по энзимологии синтеза РНК.

Продолжая эту работу, Ниренберг и Филип Ледер раскрыли триплетную природу кода и расшифровали его кодоны. В этих экспериментах различные комбинации мРНК пропускались через фильтр, содержащий рибосомы , компоненты клеток, которые переводят РНК в белок. Уникальные триплеты способствовали связыванию специфических тРНК с рибосомой. Ледер и Ниренберг в своих экспериментах смогли определить последовательности 54 из 64 кодонов. Хорана, Холли и Ниренберг получили Нобелевскую премию 1968 года за свою работу.

Три стоп-кодона были названы первооткрывателями Ричардом Эпштейном и Чарльзом Стейнбергом. «Янтарь» был назван в честь их друга Харриса Бернстайна, фамилия которого в переводе с немецкого означает «янтарь». Два других стоп-кодона были названы «охра» и «опал», чтобы сохранить тему «названий цветов».

Расширенные генетические коды (синтетическая биология)

В широкой академической аудитории широко принята концепция эволюции генетического кода от исходного и неоднозначного генетического кода к четко определенному («замороженному») коду с репертуаром из 20 (+2) канонических аминокислот. Однако есть разные мнения, концепции, подходы и идеи, что лучше всего изменить экспериментальным путем. Предлагаются даже модели, которые предсказывают «точки входа» для инвазии синтетических аминокислот в генетический код.

С 2001 года 40 неприродных аминокислот были добавлены в белок путем создания уникального кодона (перекодирования) и соответствующей пары трансфер-РНК: аминоацил-тРНК-синтетаза, чтобы кодировать его с различными физико-химическими и биологическими свойствами для использования в качестве инструмент для изучения структуры и функции белков или для создания новых или улучшенных белков.

Х. Мураками и М. Сисидо расширили некоторые кодоны до четырех и пяти оснований. Стивен А. Беннер сконструировал функциональный 65-й ( in vivo ) кодон.

В 2015 году Н. Будиса , Д. Сёлль и соавторы сообщили о полной замене всех 20 899 остатков триптофана (кодонов UGG) на неестественный тиенопирролаланин в генетическом коде бактерии Escherichia coli .

В 2016 году был создан первый стабильный полусинтетический организм. Это была (одноклеточная) бактерия с двумя синтетическими основаниями (называемыми X и Y). Основания пережили деление клеток.

В 2017 году исследователи из Южной Кореи сообщили, что они создали мышь с расширенным генетическим кодом, которая может производить белки с неестественными аминокислотами.

В мае 2019 года исследователи, предприняв знаковые усилия, сообщили о создании новой (возможно, ) формы жизнеспособной жизни , варианта бактерии Escherichia coli , путем сокращения естественного числа 64 кодонов в бактериальном геноме до 59 кодонов. вместо этого, чтобы кодировать 20 аминокислот .

Что такое генетический код: общие сведения

В любой клетке и организме все особенности анатомического, морфологического и функционального характера определяются структурой белков, которые входят в них. Наследственным свойством организма является способность к синтезу определенных белков.

В молекуле ДНК аминокислоты расположены в полипептидной цепочке, от которой зависят биологические признаки.Для каждой клетки характерна своя последовательность нуклеотидов в полинуклеотидной цепи ДНК. Это и есть генетический код ДНК. Посредством его записывается информация о синтезе тех или иных белков.

О том, что такое генетический код, о его свойствах и генетической информации рассказывается в этой статье.

Немного истории

Идея о том, что, возможно, генетический код существует, была сформулирована Дж.Гамовым и А.Дауном в середине двадцатого столетия. Они описали, что последовательность нуклеотидов, отвечающая за синтез определенной аминокислоты, содержит по меньшей мере три звена.

Позже доказали точное количество из трех нуклеотидов (это единица генетического кода), которое назвали триплет или кодон.

Всего нуклеотидов насчитывается шестьдесят четыре, потому что молекулы кислот, где происходит синтез белка или РНК, состоит из остатков четырех различных нуклеотидов.

Что такое генетический код

Способ кодирования последовательности белков аминокислот благодаря последовательности нуклеотидов характерен для всех живых клеток и организмов. Вот что такое генетический код. В ДНК есть четыре нуклеотида:

  • аденин — А;
  • гуанин — Г;
  • цитозин — Ц;
  • тимин — Т.

Они обозначаются заглавными буквами латинскими или (в русскоязычной литературе) русскими. В РНК также присутствуют четыре нуклеотида, однако один из них отличается от ДНК:

  • аденин — А;
  • гуанин — Г;
  • цитозин — Ц;
  • урацил — У.

Все нуклеотиды выстраиваются в цепочки, причем в ДНК получается двойная спираль, а в РНК — одинарная.Белки строятся на двадцати аминокислотах, где они, расположенные в определенной последовательности, определяют его биологические свойства.

Генетическая информация

Под этим понятием подразумевается программа свойств, которая передается от предков. Она заложена в наследственности как генетический код.Реализуется при синтезе белка генетический код РНК (рибонуклеиновыми кислотами):

  • информационной и-РНК;
  • транспортной т-РНК;
  • рибосомальной р-РНК.

Информация передается прямой связью (ДНК-РНК-белок) и обратной (среда-белок-ДНК).Организмы могут получать, сохранять, передавать ее и использовать при этом наиболее эффективно.

Передаваясь по наследству, информация определяет развитие того или иного организма. Но из-за взаимодействия с окружающей средой реакция последнего искажается, благодаря чему и происходит эволюция и развитие.

Таким образом в организм закладывается новая информация.

Вычисление закономерностей молекулярной биологии и открытие генетического кода проиллюстрировали то, что необходимо соединить генетику с теорией Дарвина, на основе чего появилась синтетическая теория эволюции — неклассическая биология.

Наследственность, изменчивость и естественный отбор Дарвина дополняются генетически определяемым отбором.

Эволюция реализуется на генетическом уровне путем случайных мутаций и наследованием самых ценных признаков, которые наиболее адаптированы к окружающей среде.

Расшифровка кода у человека

В девяностых годах был начат проект Human Genome, в результате чего в двухтысячных были открыты фрагменты генома, содержащие 99,99% генов человека. Неизвестными остались фрагменты, которые не участвуют в синтезе белков и не кодируются. Их роль пока остается неизвестной.

Последняя открытая в 2006 году хромосома 1 является самой длинной в геноме. Более трехсот пятидесяти заболеваний, в том числе рак, появляются в результате нарушений и мутаций в ней.

Роль подобных исследований трудно переоценить. Когда открыли, что такое генетический код, стало известно, по каким закономерностям происходит развитие, как формируется морфологическое строение, психика, предрасположенность к тем или иным заболеваниям, обмен веществ и пороки индивидов.

В чем смысл?

Энтузиазм вокруг темы редактирования генома объясняется возможностью лечить или предотвращать заболевания. Существуют тысячи генетических нарушений, которые передаются от поколения к поколению; многие из них – серьёзные и разрушительные. И они не редки: один ребёнок из двадцати пяти рождается с генетическим заболеванием. Среди самых распространённых – муковисцидоз (заболевание, которое характеризуется поражением желез внешней секреции – прим.), серповидноклеточная анемия (изменение строения белка гемоглобина, ведущее к тяжёлой форме анемии – прим.) и мышечная дистрофия.

Редактирование генома вселяет надежду на то, что эти болезни могут быть побеждены путём «переписывания» повреждённых генов в клетках пациента. Однако починка дефектных генов  – это ещё не все возможности; уже есть опыт модифицирования иммунных клеток человека для борьбы с раком или для повышения их устойчивости к ВИЧ-инфекции. Также возможно исправление дефектных генов у человеческого эмбриона – таким образом можно предотвратить наследование серьёзных заболеваний. Но эта технология неоднозначна, так как генетические изменения могут распространиться на сперму или яйцеклетки пациента, то есть все внесённые генетические корректировки и любые побочные эффекты могут быть переданы следующим поколениям.

Триплетность

Генетический код, как и многое сложно организованные система имеет наименьшую структурную и наименьшую функциональную единицу. Триплет ― наименьшая структурная единица генетического кода. Состоит она из трёх нуклеотидов. Кодон ― наименьшая функциональная единица генетического кода. Как правило, кодонами называют триплеты иРНК. В генетическом коде кодон выполняет несколько функций. Во-первых, главная его функция заключается в том, что он кодирует одну аминокислоту. Во-вторых, кодон может не кодировать аминокислоту, но, в этом случае, он выполняет другую функцию (см. далее). Как видно из определения, триплет ― это понятие, которое характеризует элементарную структурную единицу генетического кода (три нуклеотидов). Кодон ― характеризует элементарную смысловую единицу генома ― три нуклеотида определяют присоединение к полипептидной цепочки одной аминокислоты.

Элементарную структурную единицу вначале расшифровали теоретически, а затем её существование подтвердили экспериментально. И действительно, 20 аминокислот невозможно закодировать одним или двумя нуклеотидом т.к. последних всего 4. Три нуклеотида из четырёх дают 43 = 64 варианта, что с избытком перекрывает число имеющихся у живых организмах аминокислот (см.табл. 1).

Представленные в таблице 64 сочетания нуклеотидов имеют две особенности. Во-первых, из 64 вариантов триплетов только 61 являются кодонами и кодируют какую-либо аминокислоту, их называют смысловые кодоны. Три триплета не кодируют.

Таблица 1.

Как пользоваться этой таблицей, смотрите в этом видео:

Стоп-кодоны

Кодоны информационной РНК и соответствующие им аминокислоты являются стоп-сигналами, обозначающие конец трансляции. Таких триплетов три ― УАА, УАГ, УГА, их ещё называют «бессмысленные» (нонсенс кодоны). В результате мутации, которая связана с заменой в триплете одного нуклеотида на другой, из смыслового кодона может возникнуть бессмысленный кодон. Такой тип мутации называют нонсенс-мутация. Если такой стоп-сигнал сформировался внутри гена (в его информационной части), то при синтезе белка в этом месте процесс будет постоянно прерываться ― синтезироваться будет только первая (до стоп-сигнала) часть белка. У человека с такой патологией будет ощущаться нехватка белка и возникнут симптомы, связанные с этой нехваткой. Например, такого рода мутация выявлена в гене, кодирующем бета-цепь гемоглобина. Синтезируется укороченная неактивная цепь гемоглобина, которая быстро разрушается. В результате формируется молекула гемоглобина, лишённая бета-цепи. Понятно, что такая молекула вряд ли будет полноценно выполнять свои обязанности. Возникает тяжёлое заболевания, развивающееся по типу гемолитической анемии (бета-ноль талассемия, от греческого слова «Таласа» ― Средиземное море, где эта болезнь впервые обнаружена).

Механизм действия стоп-кодонов отличается от механизма действия смысловых кодонов. Это следует из того, что для всех кодоны, кодирующие аминокислоты, найдены соответствующие тРНК. Для нонсенс-кодонов тРНК не найдены. Следовательно, в процессе остановки синтеза белка тРНК не принимает участие.

Кодон АУГ (у бактерий иногда ГУГ) не только кодируют аминокислоту метионин и валин, но и является инициатором трансляции.

Неканонические значения кодонов

По крайней мере у 16 типов организмов генетический код отличается от канонического. Например многие виды зелёных водорослей Acetabularia транслируют стандартные стоп-кодоны UAG и UAA в аминокислоту глицин, а гриб Candida интерпретирует РНК-кодон CUG не как лейцин, а как серин. А у митохондрий пекарских дрожжей (Saccharomyces cerevisiae) четыре из шести кодонов, обычно транслирующихся в лейцин, кодируют треонин.
Существование таких вариаций свидетельствует о возможной эволюции генетического кода.

Представители всех трёх доменов живых организмов иногда прочитывают стандартный стоп-кодон UGA как 21-ю аминокислоту селеноцистеин, не относящуюся к 20 стандартным. Селеноцистеин образуется при химической модификации серина на стадии, когда последний ещё не отсоединился от тРНК в составе рибосомы.

Аналогично у представителей двух доменов (архебактерий и бактерий) стоп-кодон UAG прочитывается как 22-я аминокислота пирролизин.

А что может пойти не так?

Современное редактирование генома довольно точное, но не идеальное. Процедура похожа на прицельную стрельбу – надо попасть по нужным клеткам, а по остальным – промахнуться. Даже если Crispr попадает куда нужно, изменения могут отличаться от клетки к клетке, например, в одной нужно исправить две копии мутировавшего гена, а в другой – только одну

Для некоторых генетических заболеваний это не столь важно, но становится проблемой, если заболевание возникает из-за единственного мутировавшего гена. Другая трудность возникает, когда изменения были произведены в неправильном участке генома

Таких «выстрелов не по мишени» может быть сотни, и они могут быть опасны, если разрушают здоровые гены или критически важные регуляторы ДНК.

Альтернативные кодоны в других таблицах перевода

Когда-то считалось, что генетический код универсален: кодон будет кодировать одну и ту же аминокислоту независимо от организма или источника. Однако сейчас все согласны с тем, что генетический код развивается, что приводит к расхождениям в том, как кодон транслируется в зависимости от генетического источника. Например, в 1981 году было обнаружено, что использование кодонов AUA, UGA, AGA и AGG системой кодирования в митохондриях млекопитающих отличается от универсального кода. Стоп-кодоны также могут быть затронуты: у реснитчатых простейших универсальные стоп-кодоны UAA и UAG кодируют глутамин. В следующей таблице показаны эти альтернативные кодоны.

Аминокислотные биохимические свойства Неполярный Полярный Базовый Кислый ↓ Прекращение: стоп-кодон *
Сравнение трансляций кодонов с альтернативными и стандартными генетическими кодами
Код Таблица
перевода
Кодон ДНК задействован РНК-кодон вовлечен Перевод с этим кодом Стандартный перевод Заметки
1 Включает таблицу перевода 8 ( хлоропласты растений ).
Митохондрии позвоночных 2 AGA AGA Стоп * Арг (R)
AGG AGG Стоп * Арг (R)
ATA AUA Встреча (M) Иль (I)
TGA UGA Trp (Вт) Стоп *
Митохондриальные дрожжи 3 ATA AUA Встреча (M) Иль (I)
CTT CUU Thr (T) Лей (L)
CTC CUC Thr (T) Лей (L)
CTA CUA Thr (T) Лей (L)
CTG CUG Thr (T) Лей (L)
TGA UGA Trp (Вт) Стоп *
CGA CGA отсутствующий Арг (R)
CGC CGC отсутствующий Арг (R)
Плесень, простейшие и кишечнополостные митохондрии + микоплазма / спироплазма 4 TGA UGA Trp (Вт) Стоп * Включает таблицу трансляции 7 ( кинетопласты ).
Митохондриальные беспозвоночные 5 AGA AGA Сер (S) Арг (R)
AGG AGG Сер (S) Арг (R)
ATA AUA Встреча (M) Иль (I)
TGA UGA Trp (Вт) Стоп *
Инфузорное, дазикладовое и гексамитовое ядерное 6 TAA UAA Gln (Q) Стоп *
ТЕГ UAG Gln (Q) Стоп *
Митохондрии иглокожих и плоских червей 9 AAA AAA Asn (N) Лис (К)
AGA AGA Сер (S) Арг (R)
AGG AGG Сер (S) Арг (R)
TGA UGA Trp (Вт) Стоп *
Эуплотид ядерный 10 TGA UGA Цис (С) Стоп *
Бактериальные, архейные и растительные пластиды 11 См. .
Альтернативные дрожжевые ядерные 12 CTG CUG Сер (S) Лей (L)
Асцидий митохондриальный 13 AGA AGA Гли (G) Арг (R)
AGG AGG Гли (G) Арг (R)
ATA AUA Встреча (M) Иль (I)
TGA UGA Trp (Вт) Стоп *
Альтернативный митохондриальный плоский червь 14 AAA AAA Asn (N) Лис (К)
AGA AGA Сер (S) Арг (R)
AGG AGG Сер (S) Арг (R)
TAA UAA Тюр (Y) Стоп *
TGA UGA Trp (Вт) Стоп *
Ядерная блефария 15 ТЕГ UAG Gln (Q) Стоп * По состоянию на 18 ноября 2016 г .: отсутствует в обновлении NCBI. Аналогично .
Митохондрии Chlorophycean 16 ТЕГ UAG Лей (L) Стоп *
Митохондриальные трематоды 21 год TGA UGA Trp (Вт) Стоп *
ATA AUA Встреча (M) Иль (I)
AGA AGA Сер (S) Арг (R)
AGG AGG Сер (S) Арг (R)
AAA AAA Asn (N) Лис (К)
Scenedesmus obliquus митохондриальный 22 TCA УЦА Стоп * Сер (S)
ТЕГ UAG Лей (L) Стоп *
Митохондриальный Thraustochytrium 23 TTA UUA Стоп * Лей (L) Аналогично .
Птеробранхии митохондриальные 24 AGA AGA Сер (S) Арг (R)
AGG AGG Лис (К) Арг (R)
TGA UGA Trp (Вт) Стоп *
Кандидат в разделение SR1 и Gracilibacteria 25 TGA UGA Гли (G) Стоп *
Пахисолен tannophilus ядерный 26 год CTG CUG Ала (А) Лей (L)
Кариореликт ядерный 27 TAA UAA Gln (Q) Стоп *
ТЕГ UAG Gln (Q) Стоп *
TG UGA Стоп * или же Trp (Вт) Стоп *
Кондилостома ядерная 28 год TAA UAA Стоп * или же Gln (Q) Стоп *
ТЕГ UAG Стоп * или же Gln (Q) Стоп *
TGA UGA Стоп * или же Trp (Вт) Стоп *
Мезодиниум ядерный 29 TAA UAA Тюр (Y) Стоп *
ТЕГ UAG Тюр (Y) Стоп *
Перитрих ядерный 30 TA UAA Glu (E) ↓ Стоп *
ТЕГ UAG Glu (E) ↓ Стоп *
Бластокритидия ядерная 31 год TAA UAA Стоп * или же Glu (E) ↓ Стоп *
ТЕГ UAG Стоп * или же Glu (E) ↓ Стоп *
TGA UGA Trp (Вт) Стоп *
Митохондриальный код Cephalodiscidae 33 AGA AGA Сер (S) Арг (R) Аналогично .
AGG AGG Лис (К) Арг (R)
TAA UAA Тюр (Y) Стоп *
TGA UGA Trp (Вт) Стоп *

Нуклеиновые кислоты. АТФ

Нуклеиновые кислоты (от лат. nucleus – ядро) – кислоты, впервые обнаруженные при исследовании ядер лейкоцитов; были открыты в 1868 г.

И.Ф. Мишером, швейцарским биохимиком. Биологическое значение нуклеиновых кислот — хранение и передача наследственной информации; они необходимы для поддержания жизни и для ее воспроизведения.

Нуклеиновые кислоты

Дезоксирибонуклеиновая кислота (ДНК) Рибонуклеиновая кислота (РНК)

ДНК и РНК – полимеры, мономерами которых являются нуклеотиды.

Строение нуклеотида – мономера нуклеиновых кислот:

Состав Строение
Химические элементы: углерод, водород, кислород, азот, фосфор (C, H, O, N, P). Это соединение, состоящее из азотистого основания, углевода (рибозы или дезоксирибозы) и остатка фосфорной кислоты.

Нуклеотид ДНК и нуклеотид РНК имеют черты сходства и различия.

Строение нуклеотида ДНК

Органическое азотистое основание: либо аденин А, либо гуанин Г, либо цитозин Ц, либо тимин Т

Углевод дезоксирибоза Остаток фосфорной кислоты

Строение нуклеотида РНК

Органическое азотистое основание: либо аденин А, либо гуанин Г, либо цитозин Ц, либо урацил У

Углевод рибоза Остаток фосфорной кислоты

Молекула ДНК – двойная цепь, закрученная по спирали.

Молекула РНК представляет собой одиночную нить нуклеотидов, схожую по строению с отдельной нитью ДНК.

Только вместо дезоксирибозы РНК включает другой углевод – рибозу (отсюда и название), а вместо тимина – урацил.

Две нити ДНК соединены друг с другом водородными связями. При этом наблюдается важная закономерность: напротив азотистого основания аденин А в одной цепи располагается азотистое основание тимин Т в другой цепи, а против гуанина Г всегда расположен цитозин Ц.

Эти пары оснований называют комплементарными парами.

Таким образом, принцип комплементарности (от лат.

complementum – дополнение) состоит в том, что каждому азотистому основанию, входящему в нуклеотид, соответствует другое азотистое основание.

Возникают строго определенные пары оснований (А – Т, Г – Ц), эти пары специфичны. Между гуанином и цитозином – три водородные связи, а между аденином и тимином возникают две водородные связи в нуклеотиде ДНК, а в РНК две водородные связи возникают между аденином и урацилом.

Водородные связи между азотистыми основаниями нуклеотидов

ДНК РНК

А = Т А = У

Г ≡ Ц Г ≡ Ц

В результате у всякого организма число адениловых нуклеотидов равно числу тимидиловых, а число гуаниловых — числу цитидиловых.

Благодаря этому свойству последовательность нуклеотидов в одной цепи определяет их последовательность в другой. Такая способность к избирательному соединению нуклеотидов называется комплементарностью, и это свойство лежит в основе образования новых молекул ДНК на базе исходной молекулы (репликации, т.е. удвоения).

Таким образом, количественное содержание азотистых оснований в ДНК подчинено некоторым правилам:

1) Сумма аденина и гуанина равна сумме цитозина и тимина А + Г = Ц + Т.

2) Сумма аденина и цитозина равна сумме гуанина и тимина А + Ц = Г + Т.

3) Количество аденина равно количеству тимина, количество гуанина равно количеству цитозина А = Т; Г = Ц.

При изменении условий ДНК, подобно белкам, может подвергаться денатурации, которая называется плавлением.

ДНК обладает уникальными свойствами: способностью к самоудвоению (репликация, редупликация) и способностью к самовосстановлению (репарация).

Репликация обеспечивает точное воспроизведение в дочерних молекулах той информации, которая была записана в материнской молекуле. Но в процессе репликации иногда возникают ошибки.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector